

PHENIICS Fest 2018

May 28-29, 2018

Understanding the first formation stages of (Y, Ti) oxides in Oxide Dispersion Strengthened (ODS) steels

Martin OWUSU-MENSAH

(CSNSM, Univ Paris-Sud, CNRS/IN2P3, Orsay)

Aurélie GENTILS, Stéphanie JUBLOT-LECLERC, Cédric BAUMIER, Joël RIBIS, Vladimir BORODIN

Content

- •Introduction
 - oContext of study
 - OMotivation
- •Experimental approach
 - Characterization techniques
 - olmplantation, parameters and conditions
- Results
 - oIn-situ annealing
 - oBulk sample annealing
 - According to the nature, chemical composition and crystallographic structure
- Summary
- Perspectives

Nuclear Power evolution

Gen IV Forum, 2001

Six technologies:

Sodium Fast Reactor (SFR)

Lead Fast Reactor (LFR)

Gas Fast Reactor (GFR)

Very High Temperature Reactor (VHTR)

Supercritical Water Reactor (SWR)

Molten Salt Reactor (MSR)

Operating conditions and structural materials of Gen IV

Operating Conditions:

High temperature (500 – 1000 °C)

High Neutron displacement damage (up to 200 displacements per atom d.p.a.)

Candidate structural materials:

- Austenitic steels
 Good high temperature strength
 ✓
 Swelling under irradiation
 X
- Ferritic/ Martensitic steels
 Good irradiation resistance ✓
 Poor high temperature strength X
- ODS steel
 Improved high temperature strenght ✓
 Good radiation resistance ✓

Oxide Dispersion Strengthened (ODS) steels

(Y, Ti, O) nanoparticles dispersed in the alloy

Properties of ODS alloys:

- Good mechanical properties at high temperature
- Good irradiation resistance and resistance to corrosion at high temperature
- Better resistance to tension and compression

Mechanical alloying (MA)

- Production of alloying powders (FeCr, Y₂O₃, FeY, etc.) by powder atomisation
- Powder mixing (ball milling)
- Degassing system

Thermal treatment

- Consolidation to favour the formation of yttrium oxides
- Cold rolling into required tubes

Nature of the nano-particles -

Y or mixed (Y,Ti) oxide nanoparticles dispersion (MA + Consolidation)

The oxides formed in ODS steels are characterized according to:

size, composition and structure

The nature of the particles depend on:

- •The composition of the alloy
- The conditions of fabrication

The alloys contain:

Fe, Cr (9-20%), Y, Ti, O, AI, Zr, and impurities (W, V, Mn etc.)

Characterization performed by mainly two main techniques

1. Atom Probe Tomography (APT)

2. Transmission Electron Microscopy (TEM)

EFTEM

Objective

Understanding the mechanisms of formation of (Y, Ti, O) particles in FeCr alloys

Literature review - (1)

D. Sakuma et al., report at ICFRM-11 (Kyoto, Japan, 2003)

Available online at www.sciencedirect.com

SCIENCE DIRECT®

Journal of Nuclear Materials 329-333 (2004) 392-396

www.elsevier.com/locate/inucmat

Y₂O₃ nano-particle formation in ODS ferritic steels by Y and O dual ion-implantation

D. Sakuma a, S. Yamashita b, K. Oka a, S. Ohnuki a,*, L.E. Rehn c, E. Wakai d

^a Department of Materials Science, Faculty of Engineering, Graduate School of Engineering, Hokkaido University, N-13, W-8, Kita-ku, Sapporo 060-8628, Japan
^b Oarai Engineering Center, JNC, Oarai, Ibaraki 311-1393, Japan

Oarai Engineering Center, JNC, Oarai, Ibaraki 311-1393, Japan
 Materials Science Division, Argonne national laboratory, Argonne, IL 60439, USA
 Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

Findings:

- 1. Precipitation starts at the implantation stage (at room temperature)!
- 2. Precipitates grow after annealing (T > 300° C in TEM foils and > 600° C in bulk samples)
 - = direct proof that one can grow precipitates by IBS
- 3. Oxide particles are \underline{bcc} according to X-ray analysis (and Y_2O_3 is bixbyite = \underline{fcc})
 - -> particles are checked to contain Y, but no proof that they are Y₂O₃ might be pyrochlore Y₂Ti₂O₇

The reason for discrepancy – different matrix composition?

Exact material composition is not reported, but most probably Fe–(11-13)Cr–3W–0.5Ti (from earlier publications)

Literature review - (2)

Feasibility proven by C. Zheng et al. 2015 In a Fe1oCr alloy of high purity implanted with Al and O at RT

C. Zheng, A. Gentils, J. Ribis et al. Phil. Mag. 2014, J. Appl. Phys. 2017, PhD thesis 2015, ED PHENIICS, Univ Paris-Sud

EFTEM elemental maps

Result confirmed by APT

After implantation at RT:

Formation of nano-particles

- Average Diameter 4 nm, density = 1 x 10²² m⁻³
- Non-homogeneous distribution
- Chemical composition (Al,Cr,O)
- Face centred cubic structure

$$a = 3.7 - 4.2 \text{ Å}$$

Experimental Approach

Synthesis and Characterization using ion AcceLerators for Pluridisciplinary research at CSNSM : the SCALP facility

Ion Beam Analysis RBS, RBS/C, ERDA, PIXE, µPIXE, PIGE

ARAMIS

2MV Tandem - VdG 0.5 - 11 MeV * $10 \text{ nA} - 10 \mu A$

> 40 elements

* limited to 1 MeV per charge state inside the TEM

implantation / irradiation LN₂ -> 1000°C

TRANSMISSION ELECTRON MICROSCOPE

200 kV FEI Tecnai G2 F20 Twin

Resolution: 0.25 nm

in situ dual ion beam TEM

Magnification range: 70-700 000

IRMA

190 kV ion implanter 10-570 keV up to 20 mA

almost every element

implantation

SIDONIE

50 kV isotope separator 50 eV - 150 keV up to 20 mA, M/ Δ M>1000

http://www.csnsm.in2p3.fr/SCALP

in situ RBS/C and impl. LN₂ -> 600°C

TEM

characterization

high resolution camera EDX, GIF (EELS, EFTEM...), STEM -170°C up to 1300°C

Member of GIS JANNuS (Saclay and Orsay) Joint Accelerators for Nanoscience and Nuclear Simulation Member of **EMIR** French Accelerators Federation

Ion implantation

Contrary to conventional fabrication routes such as mechanical alloying, ODS steel production by **ion implantation method**

Ion beam synthesis

Ion implantation

Contrary to conventional fabrication routes such as mechanical alloying, ODS steel production by ion

implantation method

Ion beam synthesis

Element	Energy (keV)	Fluence	Max conc (at%)	Max dpa (10-3)
Oxygen	37	4x10 ¹⁶ cm ⁻²	9,7	5,5
Titanium	100	2x10 ¹⁶ cm ⁻²	5,3	22,4
Yttrium	180	2x10 ¹⁶ cm ⁻²	6,0	41,8

Characterization technique: Transmission Electron Microscopy (TEM)

TEM enables to derive:

- Structure and chemical composition of the material
- Defects (dislocations, grain boundaries etc.)
- Structure and chemical composition of the nanoparticles

FEI Tecnai G² 20 twin at CSNSM/JANNuS-Orsay

JEOL 2100 at CEA-SRMA, Saclay

200 kV Microscopes

TEM Techniques

Conventional:

- Bright Field (BF)
- Dark Field (DF)
- Diffraction

Analytical (Composition)

- Energy Dispersive X-ray Spectroscopy (EDX)
- Electron Energy Loss Spectroscopy (EELS)
- Energy Filtered TEM (EFTEM)

Analytical (Structure)

High Resolution TEM

Sample preparation

Material: High purity **FeCr** alloy fabricated at ENMSE, France Approx. **9.8wt%Cr**, near to zero impurities

Sample preparation

Material: High purity **FeCr** alloy fabricated at ENMSE, France Approx. **9.8wt%Cr**, near to zero impurities

Steps:

- Cutting to obtain ≈ 1 mm slices
- Mechanical polishing to < 100 μm
- Punching of 3 mm discs
- Electropolishing 10% Perchloric acid and 90% ethanol Temperature: -20°

Two types of samples:

- Thin foils with a hole created by electro-polishing
 Transparent to electrons
- Specimens without hole by FIB
 (Focused Ion Beam)
 Prepared at IEMN, Lille

(i) Thin foil prepared by 'Tenupol'

(ii) Specimen prepared by FIB

Results

•Nano-particle characterization by TEM of (Ti and O implanted samples)

According to the **nature of the particles**, **chemical composition** and **chrystallographic structure**

- •As-implanted sample (no nano-particles formation observed)
- Annealed thin foils
 - 500 and 600°C
 - 800°C
- •Annealed bulk samples
 - 0600°C
 - 0800°C
 - 01000°C

Ti + O annealed at 500 and 600°C

With $t < \lambda$ 0.4, EFTEM investigation is possible

Ti + O annealed at 500 and 600°C

Ti + O annealed at 500 and 600°C

Crystallographic structure

fcc cystal orientation with B = [-112] and a = 0.84 nm which matches Fe_3O_4 or $FeCr_2O_4$

fcc cystal with B = [-112] and a = 0.84 nm as well as bcc with B = [111] which matches the matrix

FeCr₂O₄ formation most likely

Quantification by EELS: bord bizarre

Element	Fe	Cr	Ti	0
Conc (at%)	8 - 10	14 - 15	1.5 - 2	70 - 75

Quantification by EELS: outside of bord bizarre

Element	Fe	Cr	Ti	0
Conc (at%)	60 - 65	6 - 7	1.5 - 2	30 - 35

Region of interest (ROI)

Ti + O annealed at 800°C

Ti + O annealed at 800°C

Ti + O annealed at 800°C

Characterization of particle by **STEM EDX**

High Resolution TEM (HRTEM) of thin foil annealed at 800°C

(HRTEM) imaging of particle

Size of particle: ≈ 12 nm

Zone axis B = 111 $a_{exp} = 0.269 \text{ nm}$

Zone axis B = 111 $a_{exp} = 0.863 \text{ nm}$

Matrix corresponding to the face centred cubic structure of **FeCr** (a_{th} = 0,286 nm)

Particle corresponding to the **face centred cubic** structure of the type FeCr₂O₄ (a_{th} = 0,850 nm)

Results

•Nano-particle characterization by TEM of (Ti and O implanted samples)

According to the **nature of the particles**, **chemical composition** and **chrystallographic structure**

- As-implanted sample
- Annealed thin foils
 - 500 and 600°C
 - 800°C
- Annealed bulk samples
 - 0600°C
 - **○800°C**
 - ○1000°C

Ti + O annealed at 600°C - bulk

High Resolution TEM (HRTEM) of bulk specimen annealed at 600°C

(HRTEM) imaging of particle

Size of particle: ≈ 12 nm

Zone axis B = 111 a_{exp} = 0.51 nm and c_{exp} = 1.34 nm

Particles with the structure corundum hexagonal of the type Cr₂O₃

 $a_{th} (Cr_2O_3) = 0,49 \text{ nm} \text{ and } c_{th} (Cr_2O_3) = 1,36 \text{ nm}$

Ti + O annealed at 800°C - bulk

High Resolution TEM (HRTEM) of bulk specimen annealed at 800°C

(HRTEM) imaging of particle

Size of particle: **≈20** nm

Size of particle: ≈18 nm

Zone axis B = 001 or 0001 a = 0,53 c = 1,31

Particles with the structure corundum hexagonal of the type Cr_2O_3

$$a_{th} (Cr_2O_3) = 0,49 \text{ nm} \text{ and } c_{th} (Cr_2O_3) = 1,36 \text{ nm}$$

Zone axis B = 2-1-10 a = 0.52 c = 1.33

→ Nanoparticles

Cr_xTi_yO_z of structure

corundum

hexagonal

Ti + O annealed at 1000°C - bulk (preliminary)

Summary

The synthesis of oxides of Ti in Fe10%Cr alloy after room temperature implantation and subsequent annealing of Ti and O is as follows:

Room temperature implantation

- Creation of vacancies
- No nano-particles are formed

Annealing at 500 and 600°C

- Surface oxide FeCr₂O₄ formed with avg length of 5 nm
- Formation of Cr₂O₃ nano-particles with a corundum hexagonal structure within the impanted region with avg length of 7 nm

Annealing at 800°C

- Ti begins to diffuse
- Surface oxide FeCr₂O₄ enriched in Ti
- Cr₂O₃ nano-particles enriched in Ti to form (CrTi)₂O₃ with avg length of 9 nm

Annealing at 1000°C

- Surface oxide presence
- (CrTi)₂O₃ nano-particles grow significantly to an avg length of 20 nm

Perspectives

Nano-particle formation:

- •Implantation of a **high purity Fe without Cr** sample with Ti and O as a comparison with the high purity FeCr sample
- •Implantation at RT followed by annealing or implantation at high temperature Y, Ti, O and Ti, Y, O

Diffusion and mobility of elements:

- Determination of the diffusion coefficient of elements
- Extraction of activation energy and other possible parameters
- Experimental simulation using a lattice diffusion Monte Carlo code called CASINO to;
 Determine the SIMS depth profile for elements
 Possible cluster formation at annealing temperatures

Remerciements à

Aurélie Gentils – Encadrant (CSNSM, Univ Paris-Sud, CNRS/IN2P3, Orsay, France)
Stéphanie Jublot-Leclerc – Co-encadrant (CSNSM, Univ Paris-Sud, CNRS/IN2P3, Orsay, France)
Jöel Ribis – Co-encadrant (CEA, DEN, DMN, SRMA, Gif sur Yvette, France)
Vladimir Borodin – Co-encadrant (NRC Kurchatov Institute et NRNU MEPhl, Moscow, Russia)

Grand merci à l'équipe SEMIRAMIS à JANNuS-Orsay pour l'assistance technique.

Notamment Cédric Baumier (Responsable du MET/ JANNuS Orsay) Cyril Bachelet (Responsable du service SEMIRAMIS/ JANNUS Orsay) Stéphane Renouf, Jérôme Bourçois, Sandrine Picard (SEMIRAMIS/ JANNUS-Orsay)

Support Financier

PHENIICS Doctoral school, Université Paris-Sud, Université Paris-Saclay, France IN2P3 Institute, CNRS, France

....

Thank you for listening