A microscopic treatment of correlated nucleons: Collective properties in stable and exotic nuclei

PhD supervised by Marcella GRASSO (IPN Orsay)
Co-supervised by Danilo GAMBACURTA (ELI-NP, Romania)
1. Introduction: Phenomenology & context

2. Starting point: Formalism of the standard Second Random-Phase Approximation (SRPA). Limitations and drawbacks

3. 1st correction method: Subtraction

4. 2nd correction method: Renormalized SRPA

5. Summary
1 Introduction: Phenomenology & context

2 Starting point: Formalism of the standard Second Random-Phase Approximation (SRPA). Limitations and drawbacks

3 1st correction method: Subtraction

4 2nd correction method: Renormalized SRPA

5 Summary
General assumptions

Framework

- Low-energy scales
 → nucleons are point-like, structureless particles
 relevant degrees of freedom
 = nucleons

- Solve the nuclear many-body problem
 → Use of effective interactions
 → Energy-Density Functionals (EDF): functionals derived in most cases from effective interactions
Interdisciplinarity of many-body techniques

Atomic physics

Bose-Einstein condensate of ultra-cold trapped atoms

Chemistry & Condensed matter physics

Strong analogy between Energy-Density Functionals (EDF) and Density Functional Theory (DFT)

Astrophysics (neutron stars)

Nuclei and other nuclear systems in star crusts
Aim and method

General motivation: What we are interested in
Describe nuclear excitation spectra: low-lying states and giant resonances.

Methodology
Going beyond the mean-field approximation (single-particle degrees of freedom): complex configurations and correlations, within the Energy-Density Functional theory (EDF).

Objective
Owing to the coupling of single-particle degrees of freedom with more complex configurations: physical description of fragmentation and spreading width of excitations.
Phenomenology

Schematic View of Giant Resonances

<table>
<thead>
<tr>
<th>ΔL=0</th>
<th>ΔL=1</th>
<th>ΔL=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISGMR</td>
<td>IVGMR</td>
<td>ISSMR</td>
</tr>
<tr>
<td>ISGDR</td>
<td>IVGDR</td>
<td>ISSDR</td>
</tr>
<tr>
<td>ISGQR</td>
<td>IVGQR</td>
<td>ISSQR</td>
</tr>
</tbody>
</table>

- **Low-lying states**
- **Giant resonances:**
 - Higher in energy
 - More collective states

Olivier VASSEUR

PHENIICS Fest 2018

28/05/2018
Phenomenology

Schematic view of giant resonances

- Low-lying states
- Giant resonances:
 - higher in energy
 - more collective states

ΔL=0
- ISGMR
- IVGMR
- ISSMR
- IVSMR

ΔL=1
- IVGDR
- ISSDR
- IVSDR

ΔL=2
- ISGQR
- IVGQR
- ISSQR
- IVSQR

ΔS=0
ΔT=0
ΔS=0
ΔT=1
ΔS=1
ΔT=0
ΔS=1
ΔT=1

Schematic view of giant resonances
1 Introduction: Phenomenology & context

2 Starting point: Formalism of the standard Second Random-Phase Approximation (SRPA). Limitations and drawbacks
 SRPA formalism
 Problems of standard SRPA

3 1st correction method: Subtraction

4 2nd correction method: Renormalized SRPA

5 Summary
Choose the form of the excitation operator \(Q^\dagger_\nu \) that creates the excited state \(|\nu\rangle \) on top of the ground state \(|0\rangle \):

\[
Q^\dagger_\nu := \sum_{m,i} (X_{mi}(\nu) \ a^\dagger_m a_i - Y_{mi}(\nu) \ a^\dagger_i a_m) \\
+ \sum_{m,n>m \ i,j>i} (X_{mnij}(\nu) \ a^\dagger_m a^\dagger_n a_j a_i - Y_{mnij}(\nu) \ a^\dagger_i a^\dagger_j a_n a_m)
\]

where

\[
\begin{align*}
Q^\dagger_\nu \ |0\rangle &= |\nu\rangle \\
Q_\nu \ |0\rangle &= 0
\end{align*}
\]
SRPA formalism

Choose the form of the excitation operator Q_{ν}^\dagger that creates the excited state $|\nu\rangle$ on top of the ground state $|0\rangle$:

$$
Q_{\nu}^\dagger := \sum_{m,i} \left(X_{mi}(\nu) a_m^\dagger a_i - Y_{mi}(\nu) a_i^\dagger a_m \right) + \sum_{m,n>m, i,j>i} \left(X_{mnij}(\nu) a_m^\dagger a_n^\dagger a_j a_i - Y_{mnij}(\nu) a_i^\dagger a_j^\dagger a_n a_m \right)
$$

where

$$
\begin{cases}
Q_{\nu}^\dagger |0\rangle = |\nu\rangle \\
Q_{\nu} |0\rangle = 0
\end{cases}
$$
SRPA formalism

2 Get the **RPA-type equations** = matrix form of equations of motion

\[
\begin{pmatrix}
A & B \\
B^* & A^*
\end{pmatrix}
\begin{pmatrix}
X(\nu) \\
Y(\nu)
\end{pmatrix}
= \hbar \omega_\nu
\begin{pmatrix}
G & 0 \\
0 & -G^*
\end{pmatrix}
\begin{pmatrix}
X(\nu) \\
Y(\nu)
\end{pmatrix}
\]

- Same equations for RPA and SRPA, **much larger dimension** in SRPA

\[
A = \begin{pmatrix}
(A_{mi,nj}) & (A_{mi,pqkl}) \\
(A_{pqkl,mi}) & (A_{mnij,pqkl})
\end{pmatrix}
= \begin{pmatrix}
\begin{array}{ll}
1p1h - 1p1h & 1p1h - 2p2h \\
2p2h - 1p1h & 2p2h - 2p2h
\end{array}
\end{pmatrix}
\]

- Well known method, but very strong truncations and approximations in early times due to **important computational effort** in SRPA

- Calculations without truncations in matrices and large cutoffs: only recently

SRPA formalism

2 Get the **RPA-type equations** = matrix form of equations of motion

\[
\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X(\nu) \\ Y(\nu) \end{pmatrix} = \hbar \omega_\nu \begin{pmatrix} G & 0 \\ 0 & -G^* \end{pmatrix} \begin{pmatrix} X(\nu) \\ Y(\nu) \end{pmatrix}
\]

- Same equations for RPA and SRPA, **much larger dimension** in SRPA

\[
A = \begin{pmatrix} (A_{mi,nj}) & (A_{mi,pqkl}) \\ (A_{pqkl,mi}) & (A_{mnij,pqkl}) \end{pmatrix} = \begin{pmatrix}
1p1h - 1p1h & 1p1h - 2p2h \\
2p2h - 1p1h & 2p2h - 2p2h
\end{pmatrix}
\]

- Well known method, but very strong truncations and approximations in early times due to **important computational effort** in SRPA

- Calculations without truncations in matrices and large cutoffs: only recently

 \[\rightarrow\] problems highlighted
Problems of standard SRPA

- Strong abnormal shift to low energies
- Instabilities (non-real eigenstates)
- Double-counting of correlations
- Cutoff dependence with zero-range interactions

The Thouless theorem cannot be extended from RPA to SRPA

Use of an effective interaction “EDF problems”

We consider two methods to address these problems:
- Subtraction method
- Include correlations in the ground state

Introduction: Phenomenology & context

Starting point: Formalism of the standard Second Random-Phase Approximation (SRPA). Limitations and drawbacks

1st correction method: Subtraction

What we get with the subtraction method
Results (preliminary): Quadrupole response

2nd correction method: Renormalized SRPA

Summary
What we get with the subtraction method

In the EDF framework, it allows to cure all the problems of SRPA

One example of application: dipole response in 48Ca

→ Better description of low-lying states with respect to SRPA (and to RPA!)

→ Better description of fragmentation and width with respect to RPA

Exp:
Results (preliminary): Quadrupole response

Work in progress on **isoscalar giant quadrupole resonances** for a range of nuclei from ^{30}Si to ^{208}Pb.

Centroids: always lower in subtracted SRPA than in RPA

Widths: larger in subtracted SRPA than in RPA

Vasseur, Gambacurta, Grasso, in progress
1 Introduction: Phenomenology & context

2 Starting point: Formalism of the standard Second Random-Phase Approximation (SRPA). Limitations and drawbacks

3 1st correction method: Subtraction

4 2nd correction method: Renormalized SRPA
 Renormalize SRPA in an iterative way
 Renormalized SRPA: Example (preliminary)
 Include pairing and non-zero temperature

5 Summary
Renormalize SRPA in an iterative way

\[
\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X(\nu) \\ Y(\nu) \end{pmatrix} = \hbar \omega_\nu \begin{pmatrix} G & 0 \\ 0 & -G^* \end{pmatrix} \begin{pmatrix} X(\nu) \\ Y(\nu) \end{pmatrix}
\]

In RPA: \(G_{mi,nj} = \delta_{mn}\rho_{ji} - \delta_{ji}\rho_{mn} \) ← One-body density matrix

\(\rho_{\alpha\alpha'} \simeq \delta_{\alpha\alpha'} n_\alpha \) ← occupation number

In standard RPA: \(n_\alpha \in \{0,1\} \). In renormalized RPA: \(n_\alpha \in [0,1] \).

Number operator method: \(n_m = \frac{1}{2(2j_m + 1)} \sum_{\nu} (2j_\nu + 1) \sum_i |Y_{mi}(\nu)|^2 + O(|Y|^4) \)

\(n_i = 1 - \frac{1}{2(2j_i + 1)} \sum_{\nu} (2j_\nu + 1) \sum_m |Y_{mi}(\nu)|^2 + O(|Y|^4) \)

Used as input to SRPA calculation

INPUT: \(\rho \equiv \rho_{HF} \)

Set up the RPA matrices \(A, B, G \)

Solve the RPA equations \(X, Y \)

INPUT to renormalized SRPA

new occupation numbers

Number-operator method
Renormalized SRPA: Example (preliminary)

Isoscalar monopole response in ^{16}O SGII interaction

Standard SRPA
Centroid $\simeq 17.2$ MeV

Renormalized SRPA
Centroid $\simeq 17.8$ MeV

→ Consistent shift to higher energies
→ But rather small correction
Include pairing and non-zero temperature

- Correlations produced by the RPA amplitudes are (too) weak. This may be due to the used diagonal approximation for the density (analysis in progress)
- Additional correlations could be included via occupation numbers → next step in the PhD

Next step

Renormalize SRPA with occupation numbers with pairing correlations (Hartree-Fock-Bogoliubov/Bogoliubov-de Gennes occupation numbers), at non-zero temperature:

- pairing or superfluid effects at $T = 0$
- $T \neq 0$ → Study of hot resonances (experimental results exist e.g. from an Italian-Polish collaboration. Maj et al. and Bracco et al.)
Summary

- It is necessary to take more complex configurations ($2p2h$) into account to describe the spreading width and the fragmentation of spectra.
- Standard SRPA — straightforward transposition of standard RPA to $2p2h$ configurations — presents important drawbacks, due to the formalism itself or due to the effective interaction.
- To address these drawbacks, we have considered two methods:
 1. Subtraction method → cures all the problems, gives a better description of spectra.
 2. Inclusion of correlations in the ground state with RPA occupation numbers → preliminary results are as expected, but weaker correction.
- Occupation-number method easily generalized to include pairing and non-zero temperature (in progress).
Summary

- It is necessary to take more complex configurations (2p2h) into account to describe the spreading width and the fragmentation of spectra.
- Standard SRPA — straightforward transposition of standard RPA to 2p2h configurations — presents important drawbacks, due to the formalism itself or due to the effective interaction.
- To address these drawbacks, we have considered two methods:
 1. Subtraction method → cures all the problems, gives a better description of spectra
 2. Inclusion of correlations in the ground state with RPA occupation numbers → preliminary results are as expected, but weaker correction
- Occupation-number method easily generalized to include pairing and non-zero temperature (in progress)

Thank you for your attention!
In the EDF framework, it allows to cure all the problems of SRPA

It was developed prior to this thesis

How it works:

1. Response functions:
 \[\rho_{kl}^{(1)} = \sum_{p,q} R_{klpq} f^{pq} \]
 \[\rho^{(1)}: \text{transition density} \]
 \[f: \text{external field} \]

 \[R_{RPA}(E) = \left(\begin{array}{cc} E - A & -B \\ -B & -E - A \end{array} \right)^{-1} \]

 \[R_{SRPA}(E) = \left[\left(\begin{array}{cc} E - A & -B \\ -B & -E - A \end{array} \right) - \left(\begin{array}{cc} \Sigma(E) & 0 \\ 0 & \Sigma(E) \end{array} \right) \right]^{-1} \]

 \[\Sigma(E): \text{energy-dependent} \]
 \[2\text{nd-order self-energy} \]

2. Double-counting is canceled if one requires \(R_{SRPA}(0) = R_{RPA}(0) \)
 This may be guaranteed by a subtraction method
 \[\Rightarrow \text{It was demonstrated that the Thouless theorem is satisfied under this condition} \]
 \[\Rightarrow \text{Cutoff dependence is also eliminated} \]

Renormalize SRPA matrix elements

Renormalized SRPA

The occupation numbers calculated iteratively in a renormalized RPA calculation are used in SRPA, to renormalize all the matrix elements.

For example, the $1p1h-1p1h$ part of A reads:

$$A_{mi,nj} = \delta_{ij}\delta_{mn}(t_m - t_i)(n_i - n_m) + \bar{v}_{mjni}(n_i - n_m)(n_j - n_n)$$

\rightarrow renormalizing factors

\rightarrow Do the same for all the other terms in the A, B and G matrices

\Rightarrow Include correlations in the ground state