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Cosmic String in a nutshell

* In the early hot expanding universe,
spontaneous symmetry breaking may
have left behind topological defects.

» Cosmic strings are 1-D defects
(Kibble )

« Motivate the existence of string
solutions :

- If a field theory has symmetry
breaking patterns, the vacuum state
may not be unique.

e example :
® : complex scalar field.

By contracting the circle we reach a
point where we can not go further
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without leaving the manifold. A small V(@) =(|®|—n?)
region where O is not defined. This ’
region line-up and form a line-like [P[=n,

defect. Fig : String formation in the "Mexican-hat" potential



Loops formation

* A network of cosmic strings is S~ \/“
characterized by : Q Q e
» »
- string tension Gy. "
SN N

- probability that they interact p

(String theory : cosmics super string,
p<1)

« cusps and kinks produce powerful bursts
of Gravitational waves (Gws).

/lenght of the loop

— . h(l,z,f)=A,(Lz)f "©(f,~f)
Gul*
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 The waveform is predicted by the theory. z z
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Network of gravitational-waves detectors

The LIGO Livingston Observatory, LIGO Hanford Observatory, and Virgo
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Observing Run ( A period of observation in which gravitational wave
detectors are taking data ) chronology



Pipeline

 We searched the Advanced LIGO ( 2 interferometers : Hanford H1, and
Livingston L1) O1 data (2015-2016) for individual bursts of GWs from cusps
and kinks.

1 Wiener-filter
analysis to identify
events from Hanford
and Livingston
matching the waveform
predicted by the theory.

Coincidence (time) to
reject a part of the
detector noise artifacts.
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A likelihood ratio is computed to rank
coincident events and infer probability to 3 -
be signal or noise.
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The signal and the noise ...

1/ We perform a blind analysis : Estimate the rate of accidental
coincidences the so-called background. It is created by shifting the
Livingston triggers sets relative to Hanford and look for coincident

events.

N A4S O : :

T 107 “TLIGO-Virgo 2015 Chunk 2

: 5 5 Background (wo DQ)
Background (w DQ)

Ranking statistic A

Reminder : high value of A means high probability to be the result of a GW.



The signal and the noise ...

« Understanding data quality is very important when working with LIGO
data ...

2 | We tested the impact of flags on the background and some were useful.

Flags = auxillary channels are used to create data quality flags to note
times when the strain data is corrupted by instrumental artifacts.
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The signal and the noise ...

3 / We studied the 200 loudest
events one by one in order to
iIndentify families of glitches.

Conclusion : Most of them are
transient noise called « blip
glitches ».

The LIGO-Virgo collaboration do
not understand these glitches.

— The search is limited by these
blip glitches.

Injection of a cusp signal (spectrogram )
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Blip glitch
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Results : Cusps search
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- The black line shows the expected background of the search.
- The red points show the cusp events rate as a function of the likelihood ratio A.

™ The events are consistent with the background.



Detection efficiency

Results : Cusp search
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e Sensitivity of the search as a
function of the cusp signal
amplitude. This is measured by
the fraction of simulated cusp
events recovered with A>A,

( highest ranked event).

 We compared with the
sensitivity of the previous LIGO
Virgo burst search ( run S5/S6
dashed lines).

» The sensitivity is improved by a factor 10!



Loop models

« We set upper limits on the cosmic string parameters for three recent
loop distribution models n(l,t)

- M=1: “original model” Vilenkin/Shellard, updated by Siemens et al.:
Phys. Rev. D 73, 105001 (2006)

- M=2: Olum et al.: Phys. Rev. D89, 023512 (2014)
- M=3: Ringeval et al.: JCAP 1010, 003 (2010)

+ super-string models, where the reconnection probability p<1.



Parameter constraints

 The parameter space (Gpu ,p) is scanned and the effective rate is
computed :

7 A,Gy,
R (Gu,p)=] e(z,Gu)" (dA“p)dA
0

Important difference between models :

 For M1 and M2, the distribution is dominated by large loops and differs
by the value of a factor of renormalization.

 For M3 if we fixe the value of Gu there is ~10*4 more very small loops
then in the others models, so the observation of small loop is favored.



Upper limits

— The excluded regions are
below the respective curves.

All the experimental results are
complementary as they probe
different regions of the loop
distributions. ( different z)

Fig : Exclusion regions are shown for three loop distribution models.
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Shaded regions are excluded by the latest (O1) Advanced LIGO stochastic and burst measurements.
We also show the bounds from the previous LIGO-Virgo stochastic measurement, from the indirect
BBN and CMB bounds and Pulsar bounds.

« Paper published : https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.102002



To conclude ...

e Today :

- Same work for the run O2. We run a first analysis including the Virgo data, but our
efforts were not useful. Virgo was not enough sensible and so we did not include Virgo
data in the final analysis.

- The results will be published soon.

* Next O3 preparation
- Use LIGO-Virgo data
- New models to test
- Combine the stochastic and burst upper limits
- In the case of a detection during O3 run, | am going to work on parameter estimation.

e Thank you !
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