Search for Light Dark Matter with LDMX and a Primary Electron Beam Facility at CERN

Torsten Åkesson LAL, 3 July 2018

The Light Dark Matter eXperiment, LDMX

Dark matter; gravitational evidence

July 3, 2018

UNIVERSIT

The gravitational observations of Dark matter, give little information on its composition

 $10^{-22} \text{ eV} - 100 \text{ M}_{\odot}$

Cosmological scenarios for the origin of Dark matter give different mass ranges.

One attractive cosmological scenario is the thermal origin of Dark matter: Dark matter and Standard Model matter were in thermal equilibrium in the early universe, and Dark matter annihilated into Standard Model particles until the annihilation rate < universe expansion rate, the freeze-out

This gives an allowed mass range ~MeV to ~10 TeV

Dark matter; Weakly Interacting Massive Particles

~ many GeV – 10 TeV is an attractive mass range since it produces the correct relic abundance with annihilation based on the strength of Weak Interactions.

This combined with that Super Symmetry naturally provides such particles has generated a large search effort in this area: Indirect searches, the LHC, direct searches Nature Physics 13, 212-216 (2017) DM Simplified Model Exclusions ATLAS Preliminary July 2017

LUNDS

Dark matter; Light Dark Matter, LDM

While there is a large effort in exploring the WIMP range. This is not the case for the range ~MeV - ~GeV, where we have most know matter

Well motivated in scenario where Dark matter is a particle with its own forces and interactions. Also, e.g. result from the Be_8^* decay indicate that there may be BSM physics in the tenths of MeV area.

A LDM model must have the properties:

- Light forces: Comparably light force carrier to mediate an efficient annihilation rate for thermal freeze-out
- Neutrality: Both the DM and the mediator must be singlets under the full SM gauge group

Study for the simplest possible scenario, a "hidden QED", with the Dark matter particle χ , and a vector mediator A'

Mass of A' and mass of χ

Two different thermal annihilation scenarios for the LDM model, depending on if $m_{A'} < m_{\chi}$ or if $m_{A'} > m_{\chi}$

 ϵ is the A' kinetic mixing parameter with the photon, giving the strength with which the A' couples to the electric charge, and therefore couples to the Standard Model $\alpha_{\rm D}$ is the Hidden sector Fine-structure constant

CMB-data shows that secluded annihilation into vector mediators is not compatible with sub-GeV Dark Matter

(Phys. Rev. D 89, 103508 (2014))

2018

Mass of A' and mass of χ in some more detail

LUNDS UNIVERSITET

Thermal targets; χ - electron scattering cross sections for direct detection

Thermal Targets; accelerator production

$$\sigma v \sim \varepsilon^2 \alpha_D \frac{m_{\chi}^2}{m_{A'}^4} = \frac{y}{m_{\chi}^2}; y = \varepsilon^2 \alpha_D \left(\frac{m_{\chi}}{m_{A'}}\right)^4$$

10

Torsten Åkesson

 $\alpha_D = 0.5, m_X/m_{A'} = 1/3$ (conservative)

July 3, 2018

Why fixed-target?

Maximize DM production & detection; heavy penalty if needing DM-SM interaction twice

UNIVERSIT

LUNDS UNIVERSITET

Kinematics

A', heavier than e⁻, carries away most of the beam energy

- \rightarrow recoil electron is soft large missing energy
- \rightarrow recoil electron emerges at wide angle large missing momentum

Kinematics: electron energy

A's created close to threshold in the em-field around the target nucleus, so the A's, heavier that the electrons, take most of the incoming electron energy —> soft recoil electron, large missing energy

Measurement pioneered by NA64

Kinematics: electron p_T

 $p_{\rm T}$ of the recoil electron very different from bremsstrahlung. To measure it require modest ${\rm E_e}$ and to measure the electron both before and after the target

Thermal relic abundance target requires $10^{14} - 10^{16}$ electrons on target

Low current – large integrated luminosity – modest energy electron beam

 \rightarrow Primary electron beam

Conceptual Layout

- phase 1:
 - 4 GeV, ~40 MHz, <ne>=1
 ~10¹⁴ EoT

- phase 2:
 - ▶ 8 16 GeV, ~200 MHz, <ne>~5
 ~10¹⁶ EOT

Torsten Åkesson

17

July 3, 2018

LDMX

Torsten Åkesson

18

Background Challenges

Tracking System

- simplified version of the Silicon Vertex Tracker (SVT) of HPS experiment
- fast (2ns hit time resolution)
- + 6 μ m resolution in bending plane
- 100 mrad stereo layers in double sided Si
- radiation hard
- technology well understood

tagging tracker

- 60 cm length in 1.5T field
- 6 stereo layers
- momentum filter
- impact point on target

recoil tracker

- 18 cm length in fringe field
- 4 stereo layers + 2 axial layers
 - Momentum (50 MeV 1.2 GeV)
 - Measure p, direction and impact

target

- ~0.1 0.3 X₀ tungsten
- balance signal rate and momentum smearing

20

Tagging Tracker

- excellent momentum resolution
- highly efficient in rejecting beam-induced backgrounds

Recoil Tracker

Tagger (p_x , p_y) resolutions at target are (1.0,1.4) MeV Recoil (p_x , p_y) resolutions are limited by 4 MeV scattering in 10% X₀ target Tight LDMX Preliminary LDMX Preliminary Recoils Loose Recoils **LDMX** Preliminary (MeV) p_x resolution (MeV) p_y resolution 0 40 20 0.0 0.0 10 10² 103 104 0.5 1.0 2.0 2.5 3.5 4.0 0.5 1.0 2.0 2.5 3.0 3.5 4.0 1.5 3.0 1.5 A' Mass (MeV) recoil |pe| (GeV) recoil |pe| (GeV)

> resolution limited by 4 MeV from multiple scattering in (full) target

 good acceptance over wide mass range

Electromagnetic Calorimeter (ECal)

- ECal shopping list:
 - fast
 - radiation hard
 - dense
 - high-granularity
 - deep (containment)

very similar to forward SiW sampling calorimeter for CMS@HL-LHC

this

design based on

- In LDMX:
 - 40 radiation lengths deep
 - 30 layers, 7 modules each
 - central modules with higher granularity (up to 1000 channels)

ECal can track minimum ionizing particles, for rejection of $\gamma \rightarrow \mu + \mu$ and $\gamma \rightarrow$ photonuclear events

Electromagnetic Calorimeter (ECal)

Lunds

UNIVERSITET

Hadronic Calorimeter (HCal)

- Main task: Veto background
 - In particular: photo-nuclear reactions that produce only neutral particles
 - + e.g. $\gamma n \to n n \bar{n}$, or worst case with photo-nuclear reactions where E $_{\gamma}$ taken by essentially just one neutron
 - Sampling calorimeter with plastic scintillator (extruded polystyrene with WLS fibre) + absorber (steel)
 - Read by SiPM with either mu2e system or the system developed for CMS

Hadronic Calorimeter (HCal); ongoing optimization

Simulation studies show potential to get background free for 4×10¹⁴ EoT

Trigger

- use missing energy signature
 - reject ~beam-energy signals (non interacting e⁻, bremsstrahlung,...)
 - use energy deposition in first 20 ECal layers
- to avoid triggering on empty bunches: (segmented) scintillator behind target
 - also helps getting an estimate of actual number of electrons
 - crucial for phase 2

Prescale factor Rate (Hz) Trigger **Physics** Trigger 4000 **Background-Measurement Triggers** 500 ECAL Missing-Energy > 1 GeV5000 100 HCAL hit > 2 MIP 1000 100 HCAL hit > 20 MIP 100 HCAL MIP track 200 **Detector-Monitoring Triggers** 500 Zero-bias (trigger scintillator ignored) 4.6×10^{5} 100 Beam-arrival (trigger scintillator) 1.5×10^{5} 300 Empty-detector (trigger scintillator veto) 100 **Total Trigger Budget** 5000

46 MHz bunch frequency, 1 e⁻/bunch

Projected sensitivity for phase-1

Projected sensitivity for 4×10^{14} 4 GeV electrons on target

Beam energy and target material affect the A' production cross-section, especially at high m_{A'}

To reach the pseudo-Dirac fermion target:

--- (Factor needed) needed increase in luminosity relative to Phase-I

• Factor achieved - the increase for a combination of changes to the Phase-I experiment

	•							↓
Mass Range	Factor	E _e	E _e	Target	Target	μ_e	Years	Factor
	necucu		Tactor	[Ao] Mat t	ractor		Tunning	actileveu
		-	1	0.2 W	2	1	1.5	
$0.01 \le M_{\chi} < 20$ $20 \le M_{\chi} < 80$	3	1 <u>-</u> 1	1	0.1 W	1	2	1.5	~3
		-	1	0.15 W	1.5	2	1	
		8	1.5	0.1 W	1	2	1.5	
	6	8	1.5	0.15 W	1.5	1	2	~ 6
	P	4	1	0.15 W	1.5	2	2	
$80 \le M_{\chi} < 150$		8	4	0.4 W	4	2	4	8
	10^{2}	* 8	4	0.4 Al	8	2	2	$\sim 10^2$
		16	16	0.4 W	4	1	2	
		16	16	0.4 Al	8	1	1	
		8	4	0.4 Al	8	2	4	$\sim 2 \times 10^2$
$150 \le M_{\chi} < 300$	3×10^3	16	16	0.4 W	4	2	4	$\sim 5 \times 10^2$
		16	16	0.4 Al	8	5	5	$\sim 3 \times 10^3$

•

Projected sensitivity for phase-2'; conservative estimate from phase-1 studies

Projected sensitivity for $1.6 \times 10^{15} 8$ GeV electrons on target

Projected sensitivity for phase-2; fully using the available $\int \mathcal{L} dt$

Sensitivity invisibly decaying mediator without DM interpretation

LUNDS UNIVERSITET

Other BSM physics topics

Asher Berlin et al, "Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX", soon to be posted on arXiV

Other BSM physics topics

- DM with quasi-thermal origin
- Asymmetric
- Strongly-Interacting Massive Particle (SIMP)
- Elastically Decoupling Relic (ELDER)
- New invisibly decaying mediators in general, improve sensitivity for Dark Photon
- Displaced vertex signatures
- Milli-charged particles
- Photo- and electro-nuclear processes (for future neutrino experiments)

Preliminary assessments show the LDMX will also be sensitive here, but, studies of this potential is just starting, so too early to report now

Please see: Asher Berlin et al, "Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX", soon to be posted on arXiV

Collaboration and Preliminary Design Report

Light Dark Matter eXperiment (LDMX)

Torsten Åkesson,¹ Owen Colegrove,² Giulia Collura,² Valentina Dutta,² Bertrand Echenard,³ Joshua Hiltbrand,⁴ David G. Hitlin,³ Joseph Incandela,² John Jaros,⁵ Robert Johnson,⁶ Gordan Krnjaic,⁷ Jeremiah Mans,⁴ Takashi Maruyama,⁵ Jeremy McCormick,⁵ Omar Moreno,⁵ Timothy Nelson,⁵ Gavin Niendorf,² Reese Petersen,⁴ Ruth Pöttgen,¹ Philip Schuster,⁵ Natalia Toro,⁵ Nhan Tran,⁷ and Andrew Whitbeck⁷ ¹Lund University, Department of Physics, Box 118, 221 00 Lund, Sweden ²University of California at Santa Barbara, Santa Barbara, CA 93106, USA ³California Institute of Technology, Pasadena, CA 91125, USA ⁴University of Minnesota, Minneapolis, MN 55455, USA ⁵SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

⁶Santa Cruz Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA ⁷Fermi National Accelerator Laboratory, Batavia, IL 60510, USA (Dated: June 15, 2018 : To be posted on LDMX Confluence Page)

We present an initial design study for a small-scale accelerator experiment to discover sub-GeV dark matter, probing dark matter couplings to electrons well beyond that motivated by thermal freezeout, and over a large mass range. The experiment, referred to as the Light Dark Matter Experiment (LDMX), would also be sensitive to a range of visibly and invisibly

The draft Preliminary Design Report has become sufficiently mature to be made public: https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=210534721

- Preliminary design report essentially converged
- Some more optimization needed for the hadron calorimeter
- Aim for detector prototyping during 2019
- Could start construction already 2020/2021 pending funding
- Potential for additional sub-GeV physics channels being explored
- More studies required for phase-2, but just based on the phase-1 studies it seems clear that most of the phase-2 goals can be reached without major technical developments

Excellent potential to probe thermal targets in MeV - GeV range Sensitive to a range of sub-GeV physics

a Primary Electron Beam Facility at CERN

Beam for the LDMX baseline planning: DASEL

• Dark Sector Experiments at LCLS-II (Linac Coherent Light Source II) at SLAC; parasitic operation

Beam for the baseline planning: DASEL

· Dark Sector Experiments at LCLS-II (Linac Coherent Light Source II) at SLAC; parasitic operation

→ First 4 and later 8 GeV; 46 MHz (phase-1, 4x10¹⁴ EoT), 186 MHz (phase-2, 10¹⁶ EoT)

An Electron Beam Facility at CERN

- DASEL starts by delivering a 4 GeV electron beam; 4 GeV is not optimal
 - Higher energy makes it easier to reject photonuclear reactions (more difficult to hide the γ-energy)
 - Higher energy increases the yield and acceptance at higher $m_{A^{\prime}}^{}$
- Optimal beam energy around 15 GeV
 - At the time of LEP, CERN SPS accelerated electrons up to 22 GeV and injected into LEP
 - . Could this capability be reactivated?
- Addressed by the Physics Beyond Colliders working group, PBC-acc-e-beams

July 3, 2018

An Electron Beam Facility at CERN

CERN's Accelerator Complex

Torsten Åkesson

July 3, 2018

An Electron Beam Facility at CERN

Torsten Åkesson

Linac parameters

- 0.1GeV S-band injector (~3 GHz)
- 3.4GeV X-band linac (~12 GHz)
 - High gradient CLIC technology
 - 13 RF units to get 3.4 GeV in ~70 m [1]

2 x 50MW

Possible parameters

Energy spread (uncorrelated*)	<1MeV			
Bunch charge	52 pC			
Bunch length	~5ps			
Norm. trans emittance	~10um			
N bunches in one train	40			
Train length	200 ns			
Rep. rate	100 Hz			

RF DESIGN OF THE X-BAND LINAC FOR THE EUPRAXIA@SPARC_LAB PROJECT M. Diomede Et al., IPAC18

Torsten Åkesson

Linac components are available

Klystron

Modulator

One RF unit accelerates
 200 ns bunch train up
 to 264 MeV

Pulse compressor

Accelerating structure

Linac in TT5/TT4

• To be installed in the available transfer tunnels TT4, in line with the SPS

Torsten Åkesson

Injection into the SPS

Bunch to bucket injection in the 200 MHz SPS longitudinal RF structure.

Total of 75 trains of 40 bunches 3000 bunches giving 10¹² electrons in the ring

SPS RF system

- Acceleration to 16 GeV can safely be achieved
- Existing 200 MHz cavities from LEP era to be re-installed
 - Need 10MV for 16GeV electrons
 - (13) 200 MHz Standing
 Wave Cavities [1 MV per cavity] are available
- Space is available to install them
- 5ns, 10ns, ... 40 ns longitudinal structure is imposed by the available cavities

Torsten Åkesson

Slow extraction to experiments

Torsten Åkesson

Slow extraction principle, in frequency space

- Spread in oscillation frequency within the beam follows
 - Transverse distribution
 - Longitudinal distribution in presence of chromatic lattice
- Position of the resonant condition is set by the machine
- Synchrotron radiation constantly diffuse the particles to fill the tail in the distribution

Structure of extracted beam

- Flexibility
 - Bunch spacing 5ns, 10ns, ... 40ns
 - Average electrons per bunch can be chosen from <1 to anything
 - Transverse beam spot on target from very small up to hundred cm²
- This flexibility can deliver the needs of LDMX
 - Phase 1 : 10¹⁴ electrons
 - Phase 2 : 10¹⁶ electrons

Beamdump with potential for 1-3 x 10¹⁸ electrons per year

- After this beam has been delivered there is still a lot of electrons in the SPS
- These can quickly be dumped into a separate beam line
 - 1012 electrons within 23µs, possibly up to 4 times more

Such a dump could be repeated every 2 s

Beam transfer line from the SPS to experiments

- Uses existing TT10 line, designed to transport 10/20 GeV beams, followed by a new 50 m line to the hall
- Collimation in the line for control of beam distribution and intensity
 - ~ Gaussian beam profile can be made almost flat by collimation
- Beam size might be increased greatly at the target
 - Size of beam-spot chosen to deliver number of electrons/cm²/bunch-crossing on target
 - For instance a 2cm vertical and 20 cm horizontal beam is feasible
 - There is flexibility on the choice of both horizontal and vertical beam sizes

Extracted beam and experimental area

In total ~50 m new tunnel

Torsten Åkesson

Extracted beam and experimental area

• Experiment hall

Extracted beam and experimental area

Location of the experiment hall

Torsten Åkesson

Potential use of such a facility

Particle Physics and Nuclear Physics

- 10¹⁴ electrons per year with a 20 ns bunch spacing and one electron per bunch/10¹⁶ electrons per year with a 5 ns bunch spacing and 22 electrons per bunch
 - Explore dark matter interactions with a sensitivity that extends several orders of magnitude below the required sensitivity predicted by the thermal relic targets for representative dark matter candidates coupled to a dark photon in the sub-GeV mass range
- Fast beam dump giving 1-5 x 10¹² electrons per 23 µs dump resulting in 1-3 x 10¹⁸ electrons per year for an experiment, e.g. searching for dark photons decaying to Standard Model particles
- Nuclear physics: A European facility extending the energy range available at Jlab; study
 of the momentum and spin distributions of sea quarks and in particular of gluons in the
 nucleons, the study of the excitation spectrum of nucleons and hyperons, and the
 prospect to produce mesons with exotic composition and/or exotic quantum numbers.

Accelerator Physics

- Linac: a CLIC prototype A natural next technology step (together with INFN and others for X-band linacs). Technology needs a larger scale implementation. To build the eSPS injector is elegant and efficient compared to building 5-6 modules just for laboratory/beam testing.
- Relevant also for other potential future facilities using electrons like FCC-ee, a Z, W, H and top factory, covering beam energies from 45.6 to 175 GeV. To run the collider at the Z-mass is the most challenging for the injectors due to the high total charge and low equilibrium emittance in the collider. The linac relevant also for R&D towards circular e+e- machines.
- Use for plasma studies with electrons
 - Use electron (3.5GeV) beam as driver and/or probe
- Opens for R&D (positron production for example) towards Lemma (e⁺e⁻ → µ⁺µ⁻ close to production threshold) as muon source for future muon accelerator/collider?
- General accelerator R&D as in CLEAR today (<u>https://clear.web.cern.ch</u>)
 - Plasma-lenses, impedance, high grad, medical, training, instrumentation, THz, ESA irradiation
- General Linear Collider related studies
 - Example: damped beam in SPS for final focus studies (beyond the KEK ATF2). Relevant for CLIC but Europe/CERN could also contribute to an ILC with such studies; an ATF3.

Short write-up of the concept

• arXiV-1805.12379

Existing accelerator infrastructure at CERN, CERN experience with beam-manipulation, and results from the CLIC R&D can give Europe a primary electron beam facility with potential for:

- 1 A range of experiments for Hidden sector/Dark matter research
- 2 Nuclear physics like at Jefferson laboratory
- 3 A significant CLIC linac prototype
- 4 Tool for strategic and generic accelerator R&D at CERN

