Measurements of the magnetic form

 factor at low Q^{2}
Jan C. Bernauer

PRAE workshop - October 2018

RBRC Stony Brook
RKEN BNL Feasach coner University

Cross section for elastic scattering

$$
\frac{\left(\frac{d \sigma}{d \Omega}\right)}{\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}}=\frac{1}{\varepsilon(1+\tau)}\left[\varepsilon G_{E}^{2}\left(Q^{2}\right)+\tau G_{M}^{2}\left(Q^{2}\right)\right]
$$

with:

$$
\tau=\frac{Q^{2}}{4 m_{\rho}^{2}}, \quad \varepsilon=\left(1+2(1+\tau) \tan ^{2} \frac{\theta_{e}}{2}\right)^{-1}
$$

- Rosenbluth formula
- Electric and magnetic form factor encode the shape of the proton
- Fourier transform (almost) gives the spatial distribution, in the Breit frame

Radius

Why is getting radii out so hard?

Why is getting radil out so hard?

Why is getting radii out so hard?

Why is getting radii out so hard?

Why is getting radii out so hard?

Why is G_{M} at low Q^{2} important?

- Long range behavior of magnetisation in the nucleus!
- Gives the magnetic radius
- Zemach radius
- Structure seen in Mainz data

Zemach radius

$$
r_{z}=-\frac{4}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left(\frac{1}{\mu_{p}} G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)-1\right)
$$

- Another connection point to spectroscopy!
- Dominated by FF. difference from 1 at low- Q^{2}
- I.e. similar problems as charge/magnetic radii

Mainz data structure in G_{M}

Spline fit
statistical uncertainty
stat+systematical uncertainty
variation of Coulomb correction

Low- $Q G_{M}$ is hard

What do we know?

What do we know?

What do we know?

What could PRAE do?

We need measurements at backward angle, and small beam energy so that Q^{2} is smallish.

For a start:
ProRad

What could PRAE do?

We need measurements at backward angle, and small beam energy so that Q^{2} is smallish.

For a start:

Flip over ProRad

- $15 \mu \mathrm{~m}$ solid hydrogen target
- $32 \times 0.87 \mathrm{msr}$ detectors at $\approx 170^{\circ}$

reverse ProRad rates (single detector)

Reach with one week of beamtime

Can we do better?

Rate is small. Thicker target?
E.g. 2 cm liquid hydrogen target (as in Mainz)

- 1000 times more rate
- Background from scattering of target wall!
- Empty cell
- Cut elastics via momentum resolution

Reach with 1 h beamtime, liquid target

Alternative detector, proposed program

Instead of ProRad, assume 1 msr detector Movable from 120° to 175° in 5° steps
Energies: 30,50, 70, 90, 110, 140 MeV
4 h each measurement
Total of 288 hours!

Reach with 4h, alt. detector

Things to worry about

- Need good normalization, at least relative over all points
- Møller detector for relative normalization
- G_{E} dominated part can give absolute normalization
- Background for liquid target cell
- empty cell measurement and/or magnetic spectrometer
- Radiative corrections larger, especially two photon exchange
- build a positron source and measure it!

Conclusion

A measurement of G_{M} at low Q^{2} is important:

- Connection to spectroscopy
- long range structure of the proton

PRAE could provide a crucial dataset. Measurements are possible

- with a flipped-around ProRad (many weeks / few month)
- plus a different target (few weeks)
- alternative detector (fewer weeks, more points)

Extrapolation to $Q^{2}=0$

Have to extrapolate form factor to $Q^{2}=0$.
Mainz lowest $Q^{2}=0.0033(\mathrm{GeV} / \mathrm{c})^{2}$.
We use a 10th order polynomial to fit data up to $1(\mathrm{GeV} / \mathrm{c})^{2}$. This gets people scared.

Can we fit just a linear term?

Can a linear fit work?

$$
\frac{d \sigma}{d \Omega} \propto 1-\underbrace{A}_{\mathcal{O}(6)} \cdot Q^{2}+\underbrace{B}_{\mathcal{O}(30)} \cdot Q^{4}+\ldots
$$

(Q in units of $\mathrm{GeV} / \mathrm{c}$)
We want to measure the radius $(\sim \sqrt{A})$ to within 0.5%, without knowing B. So:

$$
B / A \cdot Q^{2} \ll 0.01 \longrightarrow Q^{2} \ll 0.002(\mathrm{GeV} / C)^{2}
$$

Can a linear fit work?

$$
\frac{d \sigma}{d \Omega} \propto 1-\underbrace{A}_{\mathcal{O}(6)} \cdot Q^{2}+\underbrace{B}_{\mathcal{O}(30)} \cdot Q^{4}+\ldots
$$

(Q in units of $\mathrm{GeV} / \mathrm{c}$)
We want to measure the radius $(\sim \sqrt{A})$ to within 0.5%, without knowing B. So:

$$
B / A \cdot Q^{2} \ll 0.01 \longrightarrow Q^{2} \ll 0.002(\mathrm{GeV} / C)^{2}
$$

But: Need to measure A to 1%, so measure $\frac{d \sigma}{d \Omega}$ to $6 \cdot 0.002 \cdot 0.01=0.012 \%$. Now I'm feeling depressed.

