Status of physics and detector simulations at STCF

Xiaorong Zhou

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Joint Workshop on Future Tau-Charm Factory 2018.12.4-2018.12-7, Paris

Super Tau Charm Facility in China

- $E_{cm} = 2-7$ GeV; $L = (0.5-1) \times 10^{35}$ cm⁻²s⁻¹ at 4 GeV, and single beam polarization (Phase II)
- A dedicated machine for HEP, an super τ -c machine far beyond BEPCII

Broad physics at τ -c Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- f_D and f_{Ds}
- D_0 - D_0 mixing
- Coherent D mesons decays
- Charm baryons

A Super τ -charm Facility is a natural extension and a viable option for a post-BEPCII HEP project in China.

Highlighted Physics topics @ STCF

Precision test of SM

- -R scan, hadron form factor (nucleon, Λ , π), $\Delta \alpha_{QED}$, a_{μ}
- -tau lepton decays, lepton, universality test
- -CKM matrix, Decay constants (f_D/f_{D_S}) , form factors
- -Neutral D mixing and strong phase

New physics (tiny/forbidden in SM)

- -Rare charmonium decays: LFV, LNV, BNV...
- -Rare charm decay: FCNC, LFV, LNV, invisible
- -Rare rau decay: FCNC, LFV, LNV
- -Rare light meson decay: $\eta/\eta'/\omega/\phi$

CP violation

- -Unexpected large CPV in τ or charm: tiny in SM
- -CP violation in hyperon

Hadron physics

- -Hadron spectroscopy
- -Hadron-pair threshold effects
- -Glueball: direct test of QCD at low energy
- -Multiquark, exotics, hybrids...
- -Charmonium(-like) spectroscopy
- -Charmed baryon decays

Exotic physics

- -Light dark matter: light higgs boson (a_0) , U boson
- -New interactions

Rich of physics program, unique for physics with τ leptons and c quark, important playground for study of QCD, exotic hadrons and search for new physics.

Integrated luminosity of STCF

• Assume running time 9 months/year, data taking efficiency 90%

$$10^{35} \text{cm}^{-2} \text{s}^{-1} \times 86400 \text{s} \times 270 \text{days} \times 90\% \sim 2.0 \text{ab}^{-1}/\text{year}$$

10 years data taking, total 20 ab⁻¹ conservatively

Excellent opportunities for the τ -charm physics

- B factory: Total integrated effective luminosity between 2-7 GeV is ~1.5ab⁻¹ for 50 ab⁻¹ data.
- STCF is expected to have higher detection efficiency
 - e.g. @4.26 GeV for $\pi^+\pi^-J/\psi$, $\varepsilon_{\rm BESIII}=46\%$, $\varepsilon_{\rm Belle}=10\%$
- STCF has low backgrounds for productions at threshold.

Fast Simulation Software

Scheme for Fast Simulation

- Same as BESIII for McGenEvt, and keep events in storage.
- Fast simulation for charge and neutral tracks (resolution, efficiency, error matrix etc.).
- ➤ Do not keep RecEvt information, fix random seed for repeating analysis.
- ➤ User analysis same as BESIII jobs.
- Optimize STCF detector by scaling the response parameters

Performance of Fast Simulation

Good agreement between Fast and Full simulation for gamma Energy resolution

The resolution of π^0 can be improved with improvement of energy/position resolution

Fast simulation

Following we show several highlighted physics processes using fast simulation package.

Charmonium(-like) physics

 $e^+e^- \rightarrow K^+K^-J/\psi$ Low pt Kaon tracking/resolution

Important to measure additional final states to interpret Y(4260)

Evidence of a structure around 4.5 GeV observed at BESIII.

Nature unclear

- Charmonium?
- Hybrid?
- Tetraquark?
- Molecule?

Limited statistical and more data are needed.

The efficiency increase 33% if low momentum kaon efficiency is 20% improved.

Charmonium(-like) physics

 $M^2(\pi^+\pi^-) (GeV/c^2)^2$

 $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$ Low pt Pion tracking/resolution

 $\sqrt{s} = 4.258 \text{ GeV}$

Phys. Rev. D 96, 032004 (2017)

Nature unclear

- Tetraquark?
- Molecule?
- Non-resonance

15.0

At BESIII, 5trks or 6 trks are reconstructed due to

Complex structure on $\pi^{\pm}\psi(3686)$ mass spectrum. Need PWA to reveal Zc properties.

low pion efficiency.

More statistical is needed.

2.0 Scale factor The efficiency increase 20% if low momentum pion efficiency is 20% improved.

Searching of $\eta(1440) \rightarrow \gamma \phi$

Photon position/energy resolution

- $\eta(1440)$:
 - One state:
 - triangle singularity
 - Two states:
 - $\eta(1475) \rightarrow$ first radial excitation of the η' ;
 - $\eta(1405) \rightarrow$ an excellent candidate for a 0⁻⁺ glueball
- Study the flavor structure of $\eta(1440)$ is very important
- BESIII provide the search of $J/\psi \rightarrow \gamma\gamma\phi$;
- First observation of $\eta(1440) \rightarrow \gamma \phi$;
- The main background is $J/\psi \rightarrow \gamma \pi^0 K^+ K^-$;
- Better resolution in STCF can depress the background

The background will be 50% depressed with position resolution 50% improved. (currently 6mm at BESIII)

cLFV Decay $\tau \rightarrow \gamma \mu$

 μ/π misidentification, μ detect efficiency

- Charge Lepton Flavor Violation $\tau \rightarrow \gamma \mu$
 - New physics beyond SM, constraint many modes.
 - Current limit: 4.4×10^{-8} at Babar with 0.9×10^{9} τ pairs
- Cross section grows from 0.1 nb near threshold to 3.5 nb to 4.25 GeV.
 - At BelleII:
 - $-10^{10} \tau$ pairs/year
 - ISR background dominant: e^-e^- → $\gamma \tau^+ \tau^-$
 - Expected limit: 3×10^{-9} @50 ab⁻¹
 - At STCF:
 - -7.0×10^9 τ pairs/year at 4.25 GeV
 - $-e^+e^- \rightarrow \gamma \tau^+\tau^-$ background not contribute at 4.25 GeV.
 - Dominant background: $\gamma \mu^+ \mu^-, \tau \to \pi v$
 - -4.4×10^{-8} @ 6.34 ab⁻¹ estimated at BESIII
 - Much better μ/π misId rate is needed at STCF
 - Fast simulation on this process is progressing

Test of LFU $D^0 \to \pi^- \mu^+ \nu_{\mu}$

- 4×10^9 pairs of $D^{\pm,0}$ and $10^7\sim10^8D_s$ pairs per year
 - 10¹⁰ charm from Belle II/year
- Competition to Belle II
 - The multiplicity of final state is lower by a factor of 2
 - Threshold effect, clear, double tagging
 - Produce in QM coherent state
- Improved precision of $B(D^0 \to \pi^- \mu^+ \nu_\mu)$ is obtained at BESIII
 - In SM, theoretical prediction of B($D^0 \rightarrow \pi^- \mu^+ \nu_\mu$)/B($D^0 \rightarrow \pi^- e^+ \nu_e$) is 0.985 \pm 0.002.
 - BESIII result: $0.905\pm0.027\pm0.023~(2.3\sigma)$

π/μ misId, π/K misId

$Prob(\pi o \mu)$	$\epsilon(K\pi)$	$\epsilon(\pi\pi)$	$\epsilon(\pi\pi\pi^0)$	$Prob(K \to \pi)$	$\epsilon(K\pi)$
10%	0.3%	7.2%	7.7%	10%	0.51%
5%	0.16%	3.8%	3.6%	5%	0.26%
1%	0.04%	0.9%	0.7%	1%	0.06%

The background level is significantly suppressed with better π/μ and π/K and misId.

Physics above 4.6 GeV

Edge of momentum for PID requirement

Opportunities at STCF

- Beyond the capability of BESIII and B-factories: energy, possible final states
- To study the known vector states and Zc in much more detail; higher vector spectrum
- For J⁺⁺ excited states, BESIII observed X(3872) in $e^+e^- \rightarrow \gamma X(3782)$, so far no signal for other J⁺⁺ states with masses around 3.8-4 GeV.
- At STCF, hadronic channels: $E \ge 4.7 \text{ GeV}, e^+e^- \rightarrow \omega X(J^{++})$
- E > 5 GeV, to reveal expected rich phenomena above charm baryonantibaryon thresholds; also above thresholds of excited charm-meson pairs; physics of excited charm mesons
- E > 5 GeV, $p\bar{p}J/\psi$, $\Lambda_c\bar{D}\bar{p}$ accessible, hidden-charm pentaquarks, rich spectrum above $\Lambda_c\bar{p}$ threshold
- Collins fragmentation function : $e^+e^- \to \pi\pi X$ at high energy

- Low ε due to low proton tracking ε around 5.0 GeV
- Low ε due to large particle misld at high energy such as 7.0 GeV

Study of Beam background

- High luminosity: 10^{35} cm⁻²s⁻¹
 - High radiation tolerance, especially at IP and forward region
- Beam background study is essential at STCF
- Beam background study with random trigger data at BESIII, simple extrapolation from BESIII to STCF (×100)

-Rough counting rate at STCF:

- $> 100 \text{ kHZ/cm}^2 @ \text{R} < 5\text{cm}$
- <5 kHZ/cm² @ R>20 cm

Study of Beam background

• Beam background study with random trigger data at BESIII

-Rough counting rate of EMC at STCF: ~700 HZ/cm² in barrel ~7kHZ/cm² in endcap

No dependence on beam current on TOF is seen.

Detector Layout

PXD

- Material budget $\sim 0.15\% X_0 / \text{layer}$
- $\sigma_{xy}=50 \mu m$

MDC

- $\sigma_{xy}=130 \ \mu m$
- dE/dx<7%, $\sigma_p/p = 0.5\%$ at 1 GeV

PID

π/K (and K/p) 3-4σ
separation up to 2GeV/c

EMC

Energy range: 0.02-2GeV

At 1 GeV σ_{E} (%)

Barrel(Cs(I): 2

Endcap (Cs): 4

MUD

• μ/π suppression power >10

General Consideration of Detector

- Much larger radiation tolerance, especially at IP and forward regions
- Lots of progress on PID, EMC R&D, conception design for Tracking, Muon counter system,
 - ☐ Tracking: Several Micro-Pattern Detector

Improve the momentum and spatial resolution especially for low momentum tracks

□PID: RICH/DIRC for Barrel and FTOF/DIRC for EndCap

Determine edge of momentum for PID requirement from physics processes

■EMC: CsI for Barrel, LYSO for Endcap

Good energy resolution/spatial resolution

Good time resolution to suppress noise and distinguish neutron/antineutron, KL from photons

■Muon Counter

Better muon separation from pion,

Progress on detector simulation

- STCF software team has been formed.
- OSCAR: Offline Software of Super Tau-Charm Facility.
- Detector geometry with DD4hep.

Summary

- Progress on physics simulation at STCF
 - Fast simulation package has been developed
 - Key processes are simulated to optimize the detector
 - More physical processes are studying
- Progress on beam background
 - Studied with random trigger events at BESIII
 - MC validation is undergoing
 - Will predict the beam noise for STCF with MC simulation
- Software framework is built at STCF
 - The detector geometry is described with DD4hep
 - Simulation with STCF framework is next step

Merci 谢谢