
Round table

NP explaining both B anomalies

$$\mathcal{L}_{NP} = \frac{1}{(\Lambda^D)^2} 2 \, \bar{c}_L \gamma_\mu b_L \bar{\tau} \gamma^\mu \nu_L \qquad \mathcal{L}_{NP} = \frac{1}{(\Lambda^K)^2} \bar{s}_L \gamma_\mu b_L \bar{\mu}_L \gamma^\mu \mu_L$$

$$\Lambda^D \simeq 3 \, \text{TeV} \qquad \qquad \Lambda^K \simeq 30 \, \text{TeV}$$

$$\Lambda^D \simeq \Lambda^K \equiv \Lambda$$

NP in FCNC
$$B \to K^{(*)} \mu^+ \mu^-$$
 has to be suppressed

$$\frac{1}{(\Lambda^K)^2} = \frac{C_K}{\Lambda^2} \qquad C_K \simeq 0.01$$

Charged current charm meson decays and New Physics

$$\mathcal{L}_{SM} = \frac{4G_F}{\sqrt{2}} V_{cs} \bar{s}_L \gamma^\mu c_L \, \bar{\nu}_l \gamma_\mu l \qquad \mathcal{L}_{NP} = \frac{2}{\Lambda_c^2} \bar{s}_L \gamma^\mu c_L \, \bar{\nu}_l \gamma_\mu l$$

$$\mathcal{L}_{NP} = \frac{2}{\Lambda_c^2} \bar{s}_L \gamma^\mu c_L \, \bar{\nu}_l \gamma_\mu l$$

PDG 2018

$$f_{D^+} = 211.9(1.1) \text{ MeV}$$

$$f_{D_s} = 249.0(1.2) \text{ MeV}$$

$$\frac{f_{Ds}}{f_{D}{}^{+}}=1.173(3)\,.$$

$$|V_{cs}| = 0.997 \pm 0.017$$

Electro-magnetic correction 1-3%

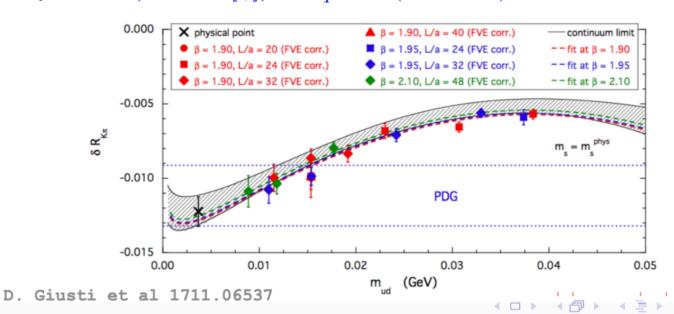
1 % error in

$$\Gamma(D_s^+ \to l^+ \nu_l)$$

$$\Lambda_c \sim 2.5 \text{ TeV}$$

Message:

Even if there is NP at 3 TeV scale the effect on charm leptonic decay can be ~ 1%!


QED corrections to leptonic decays

- Need $P \to \ell \nu + \ell \nu \gamma$ for KLN
- ullet Real photon emission in pert.th up to a (tiny) ΔE_{γ} in P-rest frame
- IR divergences universal and cancel between virtual photon contribution (NP) and real photon emission (pert) - L acts as intermediate IR regulator Inclusive Carrasco et al 1502.00257

$$\Gamma(P_{\ell 2}) = \Gamma_0 + \Gamma_1^{pt}(\Delta E_{\gamma})$$

$$= \lim_{L \to \infty} \left[\Gamma_0(L) - \Gamma_0^{pt}(L) \right] + \lim_{\mu_{\gamma} \to 0} \left[\Gamma_0^{pt}(\mu_{\gamma}) + \Gamma_1^{pt}(\Delta E_{\gamma}, \mu_{\gamma}) \right]$$

• Computed $\Gamma(P \to \ell\nu[\gamma]) = \Gamma_P^{tree} \times (1 + \delta R_P)$

τ Anomalous Magnetic Moment

Talk by A. Pich

Difficult to measure!

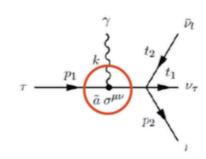
$$a_{\tau}^{\text{exp}} = (-0.018 \pm 0.017)$$

DELPHI

$$-0.007 < a_{\tau}^{\text{New Phys}} < 0.005$$

González-Springer, Santamaria, Vidal '00 (LEP/SLD data)

Eidelman, Passera

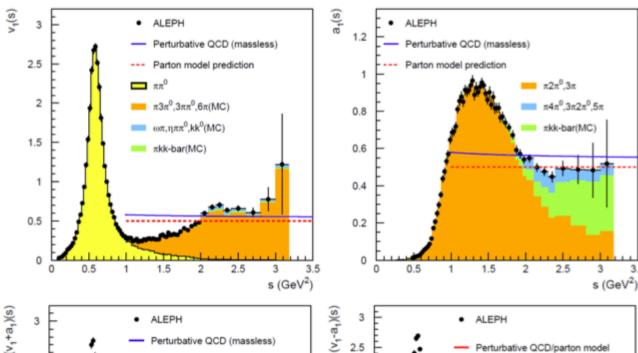

$$10^{8} \cdot a_{\tau}^{\text{th}} = 117324 \pm 2$$
 QED
+ 47.4 ± 0.5 EW
+ 337.5 ± 3.7 hvp
+ 7.6 ± 0.2 hvp NLO
+ 5 ± 3 light-by-light
= 117721 ± 5

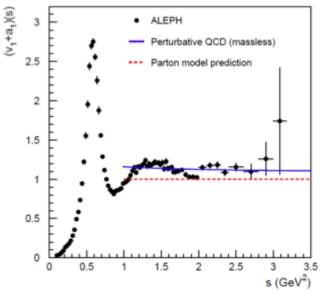
Enhanced sensitivity to new physics: $(m_{\tau}/m_{\mu})^2 = 283$

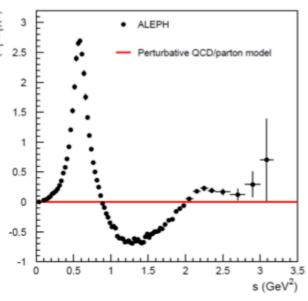
	Electron	Muon	Tau	
a ^{EW} /a ^{HAD}	1/56	1/45	1/7	
a ^{EW} /δa ^{HAD}	1.6	3	10	

Essentially unknown

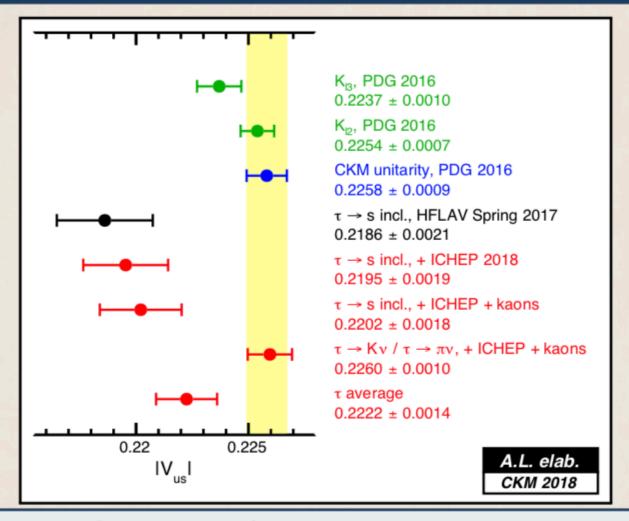
May be accessible at BFs through radiative leptonic decays (Fael et al)


SPECTRAL FUNCTIONS


Davier et al, 1312.1501


$$V_1(s) = 2\pi \operatorname{Im} \Pi_{ud,V}^{(0+1)}(s)$$

$$a_1(s) = 2\pi \operatorname{Im} \Pi_{ud,A}^{(0+1)}(s)$$


Better data needed

$|V_{\mu s}|$ from tau using HFLAV, BABAR ICHEP 2018, kaon predictions

- ightharpoonup au
 ightharpoonup s inclusive vs. CKM unitarity discrepancy: $-2.7\,\sigma$
- ightharpoonup most complete unbiased usage of exp. data for $|V_{us}|$ with $\tau \to s$ inclusive

Plenty of stringent limits

Reaction	Present limit	C.L.	Experiment	Year
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	m KTeV	2008
$K_L^0 o \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^0 o \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	${ m KTeV}$	2008
$K^{+} \to \pi^{+} \mu^{+} e^{-}$	$< 1.3 \times 10^{-11}$	90%	BNL $E865$	2005
$J/\psi o \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi o au e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi o au \mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004
$B^0 o \mu e$	$< 1.0 \times 10^{-9}$	90%	$_{ m LHCb}$	2017
$B^0 o au e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 o au \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$B o K \mu e^{\ \ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B^0 \to K^{*0} \mu e$	$< 1.8 \times 10^{-7}$	90%	Belle	2018
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ au e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 5.4 \times 10^{-9}$	90%	$_{ m LHCb}$	2017
$\Upsilon(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008

Evgeni Levitchev

Qs for round tables from accelerator:

- What are REASONABLE luminosity requirements at the different energies? Of course, the higher the better, but it may be expensive for accelerator design.
- 2. What is REASONABLE polarization level and lifetime at the different energies? Which areas are more interesting for experiments with longitudinal polarization?
- 3. Luminosity vs. polarization. Higher lumi or higher polar?
- 4. Maximum beam energy: 3 GeV, 3.5 GeV, 4 GeV... when to stop?
- What is the Priority (time table) in physics program? Energies, luminosity, polarization... Taking into account that it is difficult to reach the full luminosity from the very beginning.
- MDI design of the detector allowing to insert the accelerator equipment inside in a simple, robust, reliable, effective way.
- Preparation of a proposal to submit in the new European particle physics strategy.