#### Luminosity measurement at LHCb and other LHC experiments

French-Ukrainian workshop, LAL, 26 Sep 2018 Vladislav Balagura (LLR – Ecole polytechnique)

#### **Outline:**

- (1) Luminosity mesurement in general
- (2) LHC luminometers, comparison
- (3) Absolute calibration
  - from beam-gas "photos" of colliding bunces
  - van der Meer (vdM) scans
  - from reaction with known cross-section (fixed-target)
- (4) Novelties in two last vdM LHCb scans

**Conclusions** 

## How to measure luminosity?

1) Relative luminosity measurement can use any linear detector:

$$R = \sigma_{vis} L$$

where R is event rate,  $\sigma_{vis}$  - « visible » cross section and L – instantaneous luminosity. Having several luminometers crucial for systematics estimation.

2) Absolute luminosity calibration, ie.  $\sigma_{vis}$ , from :



Interaction region

where  $N_{_{1,2}}$  are number of protons in colliding bunches, f -frequency of collisions,  $A_{_{eff}}$  – overlap integral of two bunches.

TOTEM and ALFA measurements based on optical theorem will not be covered.

# Where do we need luminosity?

Online – to optimize performance of detectors, monitor beams and for adjusting luminosity (leveling)

Offline – ultimate precision for physics analyses

Integrated Luminosity uncertainty already is the dominant in (some) SM measurements

|                              | $\sigma^{\mathrm{fid},\mu}_{W 	o \mu \nu}$ [pb]         |             |
|------------------------------|---------------------------------------------------------|-------------|
| $W^+ 	o \mu^+ \nu$           | $2839 \pm 1 \text{ (stat)} \pm 17 \text{ (syst)}$       | ± 51 (lumi) |
| $W^- 	o \mu^- \bar{\nu}$     | $1901 \pm 1 \text{ (stat)} \pm 11 \text{ (syst)}$       | ± 34 (lumi) |
|                              | $\sigma_{Z/\gamma^* 	o \mu\mu}^{\mathrm{fid},\mu}$ [pb] |             |
| $Z/\gamma^* \to \mu^+ \mu^-$ | $477.8 \pm 0.4 \text{ (stat)} \pm 2.0 \text{ (syst)}$   |             |

"Precision measurement and interpretation of inclusive  $W^+$ ,  $W^-$  and  $Z/\gamma^*$  production cross sections with the ATLAS detector", ATLAS Collaboration, Eur. Phys. J. C (2017) 77:367" (2011 data,  $V_S = 7$  TeV, 4.6 fb<sup>-1</sup>)

- Theorists are pushing for a ~1% Luminosity measurement at HL-LHC
  - see e.g. G. Salam @ ECFA 2016 (https://indico.cern.ch/event/524795/contributions/ 2235443/attachments/1347759/2034269/HL-LHC-SMHiggs-theory.pdf)
- Total Higgs production cross-section uncertainty estimated to be ~3% given a luminosity uncertainty of 1.5%

## LHCb luminometers



Measured in ≈1 kHz random stream of « nano-events » containing only "luminometers".

N interactions per bunch crossing:  $\mu \sim 1$ -2, calculated from Poisson law,  $\mu = -\log(P(0))$ , P(0) = fraction of "empty" events (eg. N vertexes = 0 or N tracks < 2). Less systematics as no strict linearity required.

Small beam-gas backgrounds (≤1-3%): estimated from non-colliding bunches and subtracted

Level 0 CALO trigger (or BCM when L0CALO is OFF) for online luminosity monitoring

 $\mu$  is stored per smallest data unit (~10 sec running): low level "mixing" of physics and lumi-data <<1 % load to DAQ in CPU, data trafic and disk space.

## ATLAS luminometers



- 1. BCM (diamond sensors) from LHC best in Run I, train dependency in Run II
- 2. LUCID newly installed and best in Run II: provides offline + online luminosity
- 3. Inner Detector (tracks) bunch-by-bunch, but rate limited
- 4. Calorimeters: bunch integrating, currents in TileCal PMT, in EMEC and FCAL LAr gaps

## ATLAS luminometers



Fractional stability between LUCID and other ATLAS luminometers versus time, LUCID run-to-run stability = 1.3%

## CMS luminometers



- 3 luminometers independent of central DAQ ("always" operational):
  - a) Pixel Luminosity Telescope (PLT),

Run II

- b) Fast Beam Conditions Monitor (BCM1F), with a) uses zero-counting method,
- c) dedicated readout on hadronic forward calorimeter (HF), afterglow correction, best online+offline
- 2 luminometers in main CMS DAQ:
  - a) muon drift tube "track" counter (DT), integrates bunches,
- b) pixel cluster counting (PCC) with "zero-bias" trigger, after exclusion of some modules and time dependent afterglow corrections similar precision to offline HF

## ATLAS and CMS

- high pile-up  $\mu \sim 40$ : fraction of "empty" bunch crossings is essentially zero,  $\mu = -\log(P(0))$  method directly not applicable (but can be recovered by redefining "visible" event as occupying 1/40 phase space eg. in acceptance, having muon etc.)
- without  $\mu$  = log(P(0)): luminometer linearity = dominating source of systematics: dependence on pile-up, LHC filling scheme (eg. bunch spacing) etc.
- in vdM calibration fills:  $\mu \sim 1,$  large linear dynamic range required to extrapolate to physics  $\mu \sim 40$
- special emphasis (not really justified?) to have *precise* luminometer independent of common detector DAQ
- ageing of luminometers and other instrumental instabilities require
- a) corrections and
- b) vdM re-calibrations every year.
- In LHCb measured visible cross-section is stable.
- CMS: beam-gas background can not be estimated from be, eb crossings and subtracted (by luminometers design), parameterized in vdM scan fits.
- CMS: a few minutes, short vdM scans (called "emittance") in beginning / end of every fill. Take physics time, but necessary to (approximately) re-calibrate luminometers, measure ageing effects and pile-up dependences

# CMS luminosity in 2017

Table 4: Summary of the systematic uncertainties entering the CMS luminosity measurement for  $\sqrt{s} = 13$  TeV pp collisions. When applicable, the percentage correction is shown.

|               | Systematic                 | Correction (%) | Uncertainty (%) |  |
|---------------|----------------------------|----------------|-----------------|--|
|               | Length scale               | -0.9           | 0.3             |  |
|               | Orbit drift                | _              | 0.2             |  |
|               | <i>x-y</i> correlations    | +0.8           | 0.8             |  |
|               | Beam-beam deflection       | +1.6           | 0.4             |  |
| Normalization | Dynamic- $\beta^*$         | _              | 0.5             |  |
|               | Beam current calibration   | _              | 0.3             |  |
|               | Ghosts and satellites      | _              | 0.1             |  |
|               | Scan to scan variation     | _              | 0.9             |  |
|               | Bunch to bunch variation   | _              | 0.1             |  |
|               | Cross-detector consistency | 0.4-0.6        | 0.6             |  |
| Integration   | Afterglow (HF)             | _              | 0.2⊕0.3         |  |
|               | Cross-detector stability   | _              | 0.5             |  |
|               | Linearity                  | _              | 1.5             |  |
|               | CMS deadtime               | _              | 0.5             |  |
|               | Total                      |                | 2.3             |  |

# ATLAS and CMS overall precision

#### High luminosity i.e. Standard data taking

|                       | ATLAS | CMS  | ATLAS | CMS  | ATLAS | CMS  | ATLAS      | CMS        |
|-----------------------|-------|------|-------|------|-------|------|------------|------------|
| Running               | 2012  | 2012 | 2015  | 2015 | 2016  | 2016 | 2017       | 2017       |
| period                | рр    | рр   | рр    | pp   | рр    | рр   | рр         | pp         |
| √s [TeV]              | 8     | 8    | 13    | 13   | 13    | 13   | 13         | 13         |
| σ <sub>L</sub> /L [%] | 1.9   | 2.6  | 2.1   | 2.3  | 2.2   | 2.5  | 2.4 prelin | ninary 2.3 |

ATLAS Ref: https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LuminosityForPhysics

CMS Ref: CMS-PAS-LUM-17-004/17-004/15-001/13-001

Sara Valentinetti

LHCP 2018 - Bologna 4-9 June

15

Excellent precision!

## Extrapolating from vdM to physics

Shift in luminometer response between vdM (low  $\mathcal{L}$ , low  $\mu$ , few bunches far apart) and physics (high  $\mathcal{L}$ , high  $\mu$ , more than 2000 bunches in trains of 25 ns)

#### > ATLAS:

- $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} Non-linearity correction from Track-based $\mathcal{L}$ \\ \end{tabular}$ 
  - typical correction @  $\mu = 50$  for LUCID hit counting in 2017: 9%
- Systematic uncertainty evaluated by comparing with calorimeter-based correction in 2017: ±1.3%



#### > CMS:

- Non-linearity correction from emittance-scan analysis (i.e. "absolute")
  - typical correction @  $\mu = 50$  for HFET in 2017: 1.5 %
- Systematic uncertainty evaluated by comparing residual relative non-linearity of luminometers on 2017:  $\pm 1.5\%$

ATLAS Ref.: https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LuminosityForPhysics
CMS Ref.: CMS-PAS-LUM-17-004

## **ALICE** luminometers

#### V0

- two scintillator arrays on opposite side (A and C) of the IP  $(2.8 < \eta < 5.1; -3.7 < \eta < -1.7)$
- coincidence of A and C side

#### • T0

- two **Cherenkov** detector arrays on opposite sides of the IP  $(4.61 < \eta < 4.92; -3.28 < \eta < -2.97)$
- coincidence of A and C side with hardware cut on the signal arrival time difference



V0-C.

- Very low  $\mu = 0.001 1$
- Only two detectors (no redundancy)
- In 2015 overall luminosity measurement precision = 2.3% for isolated bunches, 3.4% for bunch trains (because of non-trivial systematics in V0)

## Absolute calibration of *L*

$$L = \frac{N_1 N_2 f}{A_{eff}} = N_1 N_2 f \iint \rho_1(x, y) \rho_2(x, y) dx dy$$

 $N_{1.2}$  are measured in three steps:

- total beam intensities are determined from total beam currents (slowly) measured with high accuracy by LHC direct-current current-transformers (DCCT),
- background (1-2%) in nominally empty LHC bunches or buckets is determined either with LHC equipment (BSRL) and/or with beam-gas interactions in LHCb and subtracted ,
- charge fraction per bunch is measured with LHC fast transformers (FBCT)

Typical  $N_1N_2$  uncertainty: ~0.2-0.3%.

# Beam-gas imaging (BGI)

Main difficulty:  $\iint \rho_1(x,y)\rho_2(x,y)dxdy$ 

Only at LHCb: find  $\rho_{12}$  from beam images recorded with beam-gas interactions.

◆ The very first *L* measurement at LHC in 0.9 TeV pilot run in Dec 2009

◆ To increase statistics: switch off VELO pumps; from Nov 2011 on: inject a tiny amount of gas using a dedicated injection System for Measuring the Overlap with Gas (SMOG) (~50 more interactions)



Beam-gas allows to measure "ghost" charge in nominally empty bunches



NIM A 553 (2005) 388

PLB 693 (2010) 69



First 1000 vertexes in fill 2852 (Run I).

Typical x,y(z) beam widths: 0.1 (40) mm

# Beam-gas imaging

Beam profiles are unfolded with VELO spatial resolution, determined from data as a function of N tracks, z position and interaction type (beam-beam or beam-gas).

To improve precision:  $\rho_{12}$  are fit to a sum of Gaussians simultaneously with the precisely measured beam-beam profile  $IP(x,y) \sim \rho_1 \rho_2$ .



2D fit for one bunch pair as an example. Pulls are shown by color in ±3 range in the top.

## Van der Meer scan

Idea: sweep one beam across the plane.



## Van der Meer scan

Idea: sweep one beam across the plane. This integrates its  $\rho$  out:

$$\iint \rho_1(x+\Delta x,y+\Delta y)\rho_2(x,y)d\Delta xd\Delta ydxdy=1$$

and

$$\sigma = \iint \mu(\Delta x, \Delta y) d\Delta x d\Delta y / N_1 / N_2$$



**CERN ISR-PO-68-31** 



Works for any  $\rho_{1,2}$  and any LHC crossing angle

(relativistic correction due to transverse velocity is negligible)

If  $\rho_{12}$  factorize in x,y:



Raster scan

Scan along X,Y axes (done at LHC)

$$\sigma = \frac{\int \mu(\Delta x, y_0) d \Delta x \cdot \int \mu(x_0, \Delta y) d \Delta y}{\mu(x_0, y_0) N_1 N_2}$$

"Crossing point"  $x_0, y_0$  may be chosen arbitrarily.

Another possibility: swept beam effectively becomes broad and uniform.

Similarly to "beam gas" it provides beam-beam imaging after unfolding with VELO resolution V:

$$IP = (\rho_1 \rho_2) \circ V$$

 $[\rho_2 \circ V](x) \propto \int IP(x, \Delta x) d\Delta x$ 

NIM, A 654 (2011) 634

(for  $\Delta x$  in frame of fixed beam 2)

## Van der Meer scan

μ in one bunch crossing in X, Y scan



X-Y non-factorizability can give  $\sim$ 1% bias, not easily visible (except with BGI):

- from luminous region fits
- "offset" and "diagonal" scans

## vdM length scale calibration

$$\sigma \propto \int ... d \Delta x \int ... d \Delta y$$
 directly depends on  $\Delta x, \Delta y$  scale.

Calibration: beams move *synchronously* in X or Y.

IP movement (by the same amount) is precisely measured by VELO (and can be cross-checked by BGI).



## Observations in recent pp vdM scans at LHCb

#### Recent pp vdM scans at LHCb: observations

Length Scale Calibration (LSC) in fill 4269, 25 Aug'15: LHC X- and Y-displacements were incorrectly written manually as equal. 3.5% mistake found by checking the bump magnet recordings in LHC data base. In later vdM scans the displacements were logged automatically.

FBCT measurement of N particles per bunch before 2017:

2-in-1 device for odd / even bcid, with a few % different slopes and offsets.

To equalize: ATLAS BPTX (noisier but immune to odd-even difference). Bcid can be wrong by 1-4.

Now: much better new FBCT



### Recent pp vdM scans at LHCb: observations

Fill 6012 (Jul'17): unexpected instabilities in 3 and, after 2 scans, in 19 out of 24 bunch crossings (current drops, width increase)
Only 5 good pairs used in all scans



## vdM scan with beam gas imaging

SMOG during vdM scan is very attractive cross-check:

- + measures individual bunch profiles, their movements and length scale, but
- introduces huge backgrounds.

Solid points: background is **not fully subtracted** from *Velo-based track and hit counters*.

In fill 6012, Jul'17 :  $\mu$ (head-on beam-beam) ~ 0.25,  $\mu$ (SMOG) ~ 0.13,

after background subtraction  $\Delta\mu(SMOG) \sim 0.001 - 0.002$  remains.

Therefore, final cross-section is obtained from Vertex>0 by rescaling with coefficient determined without SMOG.



## **Preliminary 13 TeV** pp cross section

Preliminary: still, a few things to finalize. Spread between 15 scans in 2015,16,17,18:

0.5% – excellent time stability without any corrections (!) contrary to ATLAS/CMS. Probably, final systematics will be ~2% or less.

| σ(Velo>1), mb                           | 63.7                         |  |  |  |
|-----------------------------------------|------------------------------|--|--|--|
| Early 2015 BGI measurement              | $63.4 \pm 3.9 \% \ (-0.6\%)$ |  |  |  |
| preliminary BGI, fill 4937              | 65.8 (+3.1 %)                |  |  |  |
|                                         | Error, %                     |  |  |  |
| DCCT                                    | 0.16                         |  |  |  |
| Ghost charge, BGI+LDM                   | <0.1                         |  |  |  |
| FBCT A/B/BPTX                           | <0.1                         |  |  |  |
| LSC                                     | <0.5                         |  |  |  |
| Fit model                               | 00.5                         |  |  |  |
| statistics                              | <0.1                         |  |  |  |
| Scan-to-scan variations within one fill | 0.20.6                       |  |  |  |
| Fill-to-fill variations                 | 0.4                          |  |  |  |
| RZ Velo – Velo diff.                    | 00.2 when SMOG off           |  |  |  |

Typical uncertainty of extrapolation from vdM to physics:  $\sim 0.5\%$  (stability of luminometer ratios)

## Other methods of luminosity calibration

## LHCb: Luminosity of p-He sample $\sqrt{s} = 110$ and 86 GeV

#### PAMELA + AMS-02: excess in anti-p / p fraction

– sign of dark matter or wrong model of anti-p production in interstellar medium of galactic disk? Largest uncertainty from  $\sigma(p+He \rightarrow anti-p X)$ 

Measurable at LHCb as fixed target process: p − He (SMOG)

Critical to know SMOG pressure, but difficult to measure precisely because it is very low

Take SMOG density from p - (atomic) e elastic scattering, using its known Rosenbluth cross-section.

Precision: 6%!



"Measurement of antiproton production in p-He collisions at  $\sqrt{s_{NN}}$ =110 GeV", https://arxiv.org/abs/1808.06127, submitted to PRL.

Same approach will be used for heavy flavor production measurements in p-He.

## Physics reaction as a luminometer

 $Z^0 \rightarrow ll$  counting (used in ATLAS and CMS) can be useful in relative luminosity debugging (validate corrections, long-term stability)

50/25 ns Luminometer Stability: Z-Yields

Example:  $N(Z^0) / L$ , should be constant, from 2015 CMS report

backgrounds – not competitive.



Z efficiency from tag and probe

Earlier proposal (eg. in LHCb): two-photon pp  $\rightarrow$  pp  $\mu^+\mu^-$ , proton compositeness can be neglected, QED precise cross-section allows to calibrate luminosity; but very low statistics and requires very forward coverage to veto



### Novelties in 2 most recent vdM scans at LHCb

Experiments typically do symmetric X,Y vdM scans with minimal variations. From end 2015 LHC allows to define scan points arbitrarily, however.

- 1) Nov'17, 5 TeV pp, 1 hour: LHCb has tried for the first time two-dimensional vdM scan
- 2) Jun'18, 13 TeV pp, 3.5 hours: many novelties (on the next slides)

## First ever quasi two-dimensional scan, Nov'17

Cross-section  $\sim$  integral over X-Y beam separation plane.

Standard vdM: along X, Y axes, assuming factorization :  $\mu(\Delta x, \Delta y) = \mu(\Delta x, 0) \mu(0, \Delta y) / \mu(0, 0)$ . Factorization cross-checks up to now: diagonal scans and scans along x=const or y=const lines.

Full two-dimensional scans are expensive (too many points). In Nov'17 LHCb scanned central region giving maximal contribution to the integral.



### Mismatch btw. factorization and 2D cross-section integrals

... for 22 bunch crossings. Red : average line with expected from spread error band. Mismatch for Velo :  $0.11\pm0.10$  % – excellent accuracy and agreement.

Full  $\chi^2$  analysis of 44 scan points, ie. of 22 x 44 = 968 underdetermined factorizability equations also gives reasonable agreement (deviation at only 6 $\sigma$  probability in spite of excellent stat. precision).



## Jun'18, 13 TeV pp vdM scan

- Same 2D scan as in Nov'17

Special program to study beam orbit drifts (difficult to control during "standard" scans)
 a) multi-pass X,Y scans
 b) spiral 2D





4 passes (2 forward + 2 backward) instead of one, each allows to find when beams are head-on and measure drifts during the scan

every side of the spiral allows to find head-on position and measure drifts

## Jun'18, 13 TeV pp vdM scan

- since beams are moving not in one direction during scan, important to check the absence of hysteresis effects in LHC magnets: forward – backward through the same points



in addition,

- more sophisticated length scale calibration
- beam-beam imaging when one beam is at rest

Lot's of interesting and new data to analyze!

## Conclusions

- (1) Luminosity measurement is a technical service, but very much needed. Eg. in LHCb used in ~15% of all publications.
- (2) Current LHCb pp luminosity precision 3.9-3.8% from early BGI measurements in 2015. When finalized, vdM scans should give ~ twice better precision. Run I, 8 TeV pp: 1.16% from combination of vdM and BGI, record for bunched colliders, J. Instrum. 9 (2014) P12005, arXiv:1410.0149.
- (3) My opinion: LHCb luminosity measurement is very well designed, excellent time stability, reference calibrations stable in 2015-2018 without need of any correction at hardware level
- (4) Lack of manpower in LHCb lumi group, only 2-3 experts and having also other duties. Rosen Matev (convener) is now on CERN long duration contract fully on HLT. BGI not covered, George Coombs finishes his PhD.
- (5) Many novelties in last 2 vdM scans at LHCb, data to be analyzed. First 2D scan results are very positive.
- (6) Ideas for upgrade are welcome