Discussions of topological optimization for additive manufacturing of a cavity

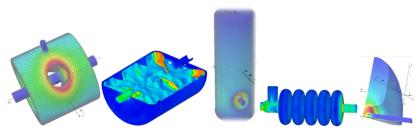
Hui Min Gassot

CNRS/In2p3/Ipn Orsay

14 dec 2018

I Simulations tools for topological optimization

- Motivations: use of simulation tool for topological optimization
 - Tests on differents simulations tools
 - Minimize the weight of a cavity


II: Topological optimization for additive manufacturing

- 2 Topology smoothing: make a STL file of a cavity for additive manufactuning
 - Extraction of smooth surface lisse

Activities on supercondecting cavities

two gaps Spoke, four gaps Spoke, Quarter wave, 5 cells cavity, single cell

Part I

Pratices on optimisation topologique

Tests on differents simulations tools

- Topological optimization solution as function of volume contraint with maximal stiffness
- Optistruct/Altair, Comsol, Cast3M



Tests on differents simulations tools

- Topological optimization solution as function of volume contraint with maximal stiffness
- Optistruct/Altair, Comsol, Cast3M

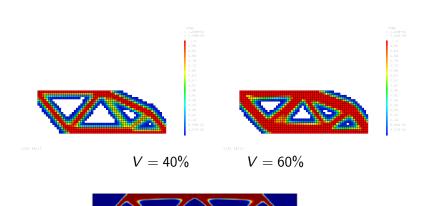
flexion of a bending beam

Design variable: pseudo-density per elements

$$E(x) = E_0 \mu^p(x)$$

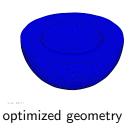
$$\rho(x) = \mu \rho_0(x)$$

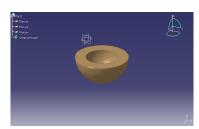
$$0 < \epsilon_{seuil} \le \mu(x) \le 1 \ p \ge 1$$


Bending beam under strength centered

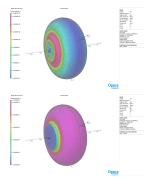
With a masse inferior to the initial mass, the topological optimization find the maximal stiffness for the material distribution in the initial volume

Comparative studies between commercial and non commercial code




- 2 Topology smoothing: make a STL file of a cavity for additive manufactuning
 - Extraction of smooth surface lisse

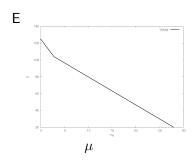
Realization of smooth surface in 3D



geometric representation of the STEP file created from optimized geometry

Some tests in perspective

monocell 804 MHz β 1 cavity


3.6GHz β 1 cavity

Porous material's properties

$$E(x) = E_0 \mu^p(x)$$
$$\rho(x) = \mu \rho_0(x)$$

for a porous material the Young's modulus is function of porosity, some model could be studied in parallel of characterizations

Advantage, possibilities and limites

Times of iteration correct Non linear mechanic

..

Development on demand

. .

