Diagnostics for ThomX

N. HUBERT, M. LABAT, M. EL-AJJOURI, D. PEDEAU, Synchrotron SOLEIL I. CHAIKOVSKA, N. DELERUE, N. EL-KAMCHI LAL

Programme Investissements d'avenir de l'Etat ANR-10-EQPX-51. Financé également par la Région IIe-de-France. Program « Investing in the future » ANR-10-EQOX-51. Work also supported by grants from Région IIe-de-France.

Diagnostics for ThomX (outline)

- Charge
- Position
- Diagnostic stations
- Length
- Stripline for transverse feedback

Charge measurement (Typ. 1 nC @ 50 Hz)

3 integrated current transformer (ICT)

- Location:
 - @ LINAC entrance
 - @ Linac exit (before first TL bending magnet)
 - @ Transfer Line (between the 2 bending magnets)

> Type:

- In-flange integrating current transformer from Bergoz
- Dedicated electronics BCM-IHR provides analog voltage proportional to the beam charge
- Acquisition to be integrated in the control system (Red Pitaya, 14 bits).
- Expected resolution <1 pC</p>

Bergoz in-flange ICT & Electronics

14 bits Red Pitaya acquisition board

ThomX Machine Advisory Comity, 20/21-03-201, N. Hubert

Charge measurement (Typ. 1 nC @ 50 Hz)

- 2 Faraday cups (FC)
 - Location: in the beam dumps
 - @ the end of Linac (behind first TL bending magnet)
 - In the end of extraction line
 - Acquisition:
 - Few tens of ns pulse to be acquired synchronously to injection or extraction trigger
 - Use of Low Pass filtering and acquisition with the Wavecatcher board (BW 500 MHz; 3.2 GS/s, 12 bits)
 - Tango device ready

Beam dump

Low-pass filtered signal

ThomX Machine Advisory Comity, 20/21-03-201, N. Hubert

Position measurement (BPM) Mechanics

- ▶ 6 Striplines
 - > 1 stripline on the LINAC
 - > 4 striplines on the transfer line
 - > 1 stripline on the extraction line
 - > $\lambda/4 @ 500 \text{ MHz} \rightarrow \text{Electrode length} = 150 \text{ mm}$
 - Resolution requirements: < 100 µm for 1 nC</p>
 - 4 electrodes @ 90° covering ~2/3 of circumference
 - Linac stripline has different design due to larger vacuum chamber diameter
 - Mechanics and soldering (feedthroughs) are done at LAL
 - Electrical tests and calibration done at SOLEIL

logic network analyzer

ThomX Machine Advisory Comity, 20/21-03-201, N. Hubert

Calibration based on "Lambertson" method using a

Position measurement (BPM) Mechanics

- 12 button BPMs for the storage ring
 - Resolution ~1 µm @ 10 Hz
 - > Prototype done at LAL
 - Mechanics and soldering are done by RIAL Vacuum, to be delivered in spring
 - > Additional electrodes on double BPM for:
 - Transverse and longitudinal bunch by bunch feedbacks

 $\mathbf{O}\mathbf{O}$

Polarization for ion cleaning

4, 6 and 8 buttons BPMS

ESRF (old) type 10 mm button

BPM prototype

ThomX Machine Advisory Comity, 20/21-03-201, N. Hubert

- Libera Brilliance+ (Instrumentation Technologies)
 - > 4 BPM boards per crate
 - Data Flow:
 - Single Pass for Linac and Transfer Line
 - @ 8,33 MHz (half rev. freq.) ~turn by turn data for storage ring
 - @10 Hz slow acquisition data for storage ring
 - > Automatic gain control
 - Post-mortem and interlock possibilities
 - Tango device available and fully configurable embedded on the ARM processor

Acceptance tests: Turn by Turn (8.33 MHz) and Slow Acquisition data (10 Hz)

Test bench for acceptance test

Turn by Turn Data

Slow Acquisition Data

Acceptance tests: Single Pass Data

Reliability issues during Libera Brilliance+ acceptance tests

- First unit delivered in January 2015
 - Acceptance test validated in march 2015
 - > Performances (beam current dependence, resolution...) are ok
 - Reliability issues pointed out (boot, data availability, Tango device server)
- > 5 other modules delivered in september 2015
 - Acceptance test not yet validated
 - > Performances (beam current dependence, resolution...) are ok.
 - Still reliability issues
 - Software upgrade: november 2015
 - 1 module back to I-Tech during 6 month
 - Software upgrade: november 2016
 - Hardware patch: november 2016
 - FPGA upgrade: January 2017
 - OS upgrade: March 2017

Diagnostics

Diagnostic stations

- Location
 - > 5 Stations on Linac and transfer lines
- Purpose:
 - > Beam size, emittance and energy measurement
- Principle:
 - Screen translation stage
 - Calibration plate
 - ▶ YAG (Ce): 25 mm diameter, 100 µm thick
 - OTR : 25 mm diameter, 100 µm aluminised silicon wafer
 - Sapphire screen (station 2 @ end of Linac)
 - View port: Fused Silica DN 60 CF
 - Imaging system
 - Gigabit Ethernet trigged CCD
 - ✓ Design
 - Screens are delivered
 - 1 translation stage is ready, the others to be ordered

117

Diagnostic stations

Transverse size measurement (1 to 2.5 mm)

- Emittance measurement
 - > Using Quadrupole scan method
 - Measure beam size vs Qpole strength
 - Required resolution: 10 pixels/sigma
 - Devices: 1 quadrupole + screen + CCD
 - Location:
 - > @ Diag stations 2 and 3

Energy measurement:

> Passing through dipole magnet \rightarrow dispersion

► $\langle x \rangle \rightarrow E = energy$

- ► $dx \rightarrow dE = energy spread$
- Device:
 - Dipole + screen + CCD
- Location:
 - @ middle of transfer line (Diag Station 3)
 - @ dump 2 (Diag station 5)

Diagnostics

Sapphire window to extract light Transport the radiation to a streak camera to measure the photon pulse

camera to measure the photon pulse length.

Cherenkov radiation produced when

the electron beam passes through the

Storage Ring (5 to 20 ps expected):

End of Linac (4.3 ps expected):

sapphire screen

- Synchrotron radiation produced when the electron beam changes its trajectory in the bending magnet
- Sapphire window to extract light
- Transport the radiation to a streak camera to measure the photon pulse length.

SR extraction port

Bunch length measurement

13

Bunch length measurement

- Complex transport path to the streak camera
 - > Streak camera installed inside laser hutch
 - > Mirror support at 2.3 meter high

ThomX Machine Advisory Comity, 20/21-03-201, N. Hubert

Synchrotron Light Monitor

Visualization of the beam on the storage ring in transverse plane

Diagnostics

Transverse feedback

Detector:

- > One set of additional button from BPM
- Actuator
 - Stripline (kicker)
 - Electrode length: 300 mm (λ/2 @500 MHz)
 - ▶ 4 electrodes for acting in H and V planes
 - Rise time < 1 ns</p>

FBT stripline

- Design main steps:
 - > Characteristic impedance
 - Geometric factor
 - S parameters
 - Shunt impedance
 - Efficiency
 - > Wakefield/Beam longitudinal impedance
 - Thermic studies
 - ✓ Simulations and design
 - ✓ Drawings
 - Consultation
 - > Manufacturing
 - Reception tests

Transverse feedback Stripline

Beam Loss Monitors

- Fiber Beam Loss Monitor (FBLM)
 - Principle:
 - Particle loss → passes through the fiber → generates Cherenkov light pulse in the fiber.
 - Pulse propagates to photomultiplier
 - Time at witch the loss pulse arrives with respect to the trigger (reference) gives the location of the loss
 - I fiber for the LINAC, 1 for the TL, 4 for the SR and 1 for the EL.
 - The choice of the fibers and PMTs are made, the order to be passed at beginning of 2017. The controller for the DAC to control remotely the PMT gain: the order to be passed at the beginning of 2017.
 - DAQ: Wavecatcher + Scope for the SR (to be ordered at the beginning of 2017)
 - Beam test @ PHIL: Wavecatcher and its Tango DS have been successfully tested with the FBLM.

Diagnostics

Beam Loss Monitors

- Scintillators coupled to the PMT to monitor the local losses (e.g. @injection)
 - Scintillator: Thalium activated Cesium Iodide CsI(Tl)
 - > More sensitive than fibers
 - > Positioned at specific locations and to be used during the commissioning and operation.
 - Scintillator is available, PMT and controller for the DAC will be ordered at the same time as for the FBLM.
 - > DAQ: RedPitaya card (Tango DS is ready) is under the test => inside crate Diag 5 and 6.
 - The assembly has been tested using the scope with the radioactive sources and with the beam @ PHIL.

CsI(Tl) + PMT

Red Pitaya

19