

HCERES evaluation of Laboratoires de la vallée d'Orsay

I PT

Nuclear Structure & Dynamics

Speaker: David Verney

Contributors: SNO group (CSNSM), NESTER/NIM groups (IPN)

Introduction to Nuclear Physics

Introduction to Nuclear Physics

List of experiments/activities and laboratories

List of experiments/activities and laboratories

direct reactions

heavies and SHE
in-beam γ spectroscopy

α-clustering
equation of state

strongly damped reactions

a "builders" community —Orsay's NP hallmark—

detectors developments

hall 110 instrumentation at ALTO: BEDO, TETRA, POLAREX, LINO, MLL-Trap

GABRIELA@Dubna, S3-REGLIS@SPIRAL2 S3-SIRIUS@SPIRAL2

AGATA, OUPS, PARIS

FAZIA

beam developments

ALTO ISOL-photofission

Human resources

CNRS Research staff

- Marlène ASSIE (CR)
- Alain ASTIER (CR)
- Didier BEAUMEL (DR)
- Yorick BLUMENFELD (DR)
- Isabelle DELONCLE (CR)
- Jérémie DUDOUET (CR) (2017-)
- Freddy FLAVIGNY (CR)
- Serge FRANCHOO (CR)
- Georgi GEORGIEV (DR)
- Jacques GUILLOT (CR)
- Karl HAUSCHILD (CR)
- Fadi IBRAHIM (DR)
- Dominique JACQUET (DR)
- Amel KORICHI (DR)
- François LE BLANC (DR)
- Joa LJUNGVALL (CR)
- Araceli LOPEZ-MARTENS (DR)
- Radomira LOZEVA (CR)
- David LUNNEY (DR)
- Marion MACCORMICK (CR)
- Brigitte ROUSSIERE (DR)
- Iulian STEFAN (CR)
- Daisuke SUZUKI (CR) (-2015)
- David VERNEY (DR)
- Jonathan WILSON (DR)
- Deyan YORDANOV (CR)

University staff

- Pierre DESESQUELLES (PR)
- Emmanuelle GALICHET (MCF)
- Carole GAULARD (MCF)
- Matthieu LEBOIS (MCF)
- Iolanda MATEA MACOVEI (MCF)
- Costel PETRACHE (PR)
- Stéphanie ROCCIA (MCF) (-2018)

Senior research fellow

• Giuseppe VERDE (2014-2017)

Emeriti

- Georges AUDI
- Bernard BORDERIE
- Chantale BRIANCON (-2015)
- Sydney GALES
- Marie-France RIVET (-2015)

CNRS Technical staff (1)

Guillaume MAVILLA

CNRS Secretarial staff (1)

• Céline GAUBERT-ROSIER

Post-doctoral fellows

- M. BABO (2017-2019)
- P. CHAUVEAU (2016-2018)
- P. DUPRE (2012-2014)
- A. GOASDUFF (2012-2014)
- A. GOTTARDO (2013-2017)
- L. GRASSI (2016-2018)
- N. JOVANCEVIC (2018-2020)
- T. KONSTANTINOPOULOS (2012-2015) A. GEORGIADOU (2018)
- R. LI (2012-2015)
- E. MINAYA (2015-2017)
- T. MORTENSEN (2013-2014)
- M. NIIKURA (2013-2014)
- D. RALET (2015-2017)

PhD students (def. year)*

- P. GRANDEMANGE (2013)
- L. LEFEBVRE (2013)
- R. LEGUILLON (2013)
- A. ETILE (2014)
- V. MANEA (2014) • A. CHOLLET (2015)
- S. KAIM (2015)
- T. ZERROUKI (2015)
- X. XING (2015)
- M. AIRIAU (2016)
- M.-C. DELATTRE (2016)
- M. KLINTEFJORD (2016)
- A. KUSOGLU (2016)
- B. LECROM (2016)
- K. REZYNKINA (2016)
- D. DELL'AQUILA (2017)
- J. GUILLOT (2017)
- A. LASHEEN (2017)
- L. OLIVIER (2017)
- C. PORTAIL (2017)
- A. BOUKHARI (2018)
- C. DELAFOSSE (2018)
- W. HUANG (2018)
- A. HUSSON (2018)
- I. MURRAY(2018)
- L. QI (2018)
- S. THOMAS (2018)
- M. MOUGEOT (2018)
- L. VASQUEZ (2018)

integrated 5-year-period population: 111 individuals

PhD students (def. year)*

- E. DUPONT (2019)
- P. LI (2019)
- B. LV (2019)
- V. ALCINDOR (2020)
- R. CHAKMA (2020)
- R. THOER (2020)
- M. SI (2021)
- G. HAEFNER (2021)
- L. LALANNE (2021)
- L. REN (2021)
- G. TOCABENS (2021)
- K. ZHANG (2021)

Visiting senior scientists

- D. Balabanski (ELI-NP, Bucharest)
- A. Macchiavelli (Lawrence Berkeley National Laboratory)
- D. Hojman (Buenos Aires, Argentina) June-July 2014
- M.A Cardona (Buenos Aires, Argentina) June-July 2014
- B. Dimitrov (INRNE, Sofia) June-July 2014
- G. Gavrilov (INRNE, Sofia) June-July 2014
- D. Tonev (INRNE, Sofia) regular visitor
- A.E. Stuchbery (ANU, Canberra, Australia) regular visitor
- M. Yavahchova (INRNE, Sofia) regular visitor
- Yu. Penionzhkevich (FLNR-JINR, Dubna) regular visitor
- S. Lukyanov (FLNR-JINR, Dubna) regular visitor
- V. Smirnov (FLNR-JINR, Dubna) regular visitor
- Yu. Sobolev (FLNR-JINR, Dubna) regular visitor
- M. Niikura (Univ Paris Sud, invited professor) May-June 2017
- M. D. Guiot (Turkey) April 2015 October 2016
- C. Petrone (NIPNE-HH, Bucharest), February 2018

*note: 3 PhD/HDR holder (1.9 PhD/perm. staff) in a 5-year period

perm= CNRS + Univ. non-perm= PhD +research fellows +emeriti

Link with local/national/international communities

HCERES evaluation – Nuclear Structure and Dynamics

A well locally/nationally/internationally integrated community

At the local level, organization around:

- The scientific forum SNIF (Nuclear Structure in Ile-de-France, gathering around 70 CEA, CNRS, UPSud nuclear physicists in Orsay-Saclay region)
- The P2IO LABEX
- The P2I Department of UPSaclay

Bruyères-le-

At the national level, the community is structured by:

- IN2P3
- GANIL Users Community
- CNRS GDR RESANET (since 2018)

At the international level, strong networking:

ENSAR2 European IA
 (ALTO is TransNational Acces facilty)

future ERINS

Financial support

IN2P3 funding

IN2P3 investment per permanent staff

Other funds:

National contracts

- ANR ANTION
- ANR PIPERADE
- ANR OASIS
- ANR POSITRAP
- ANR CLODETTE
- ANR CHYMENE
- ANR EXPAND
- French Embassy in Australia
- LIA FV-PPL France-Vietnam
- LIA COSMA France-Romania
- LIA COLLIGA France-Italy
- LIA COPIN France-Poland
- LIA France-RIKEN Japan
- PICS Russia Orsay-Dubna
- PICS Bulgaria
- PICS RIKEN
- IN2P3-JINR agreement (France-Russia)
- IN2P3-IFIN agreement (France-Romania)
- IN2P3-GSI agreement (France-Germany)

local grants

- SESAME Ile-de-France ReTIEN

 "Reaching Terra Incognita of Exotic
 Nuclei"
- U. Paris Sud ERM Grant

PIA grants

- EQUIPEX S3
- LABEX P2IO Highsp..
- LABEX P2IO Projet emblématique: "charting terra incognita"
- LABEX P2IO ½ PhD funding
- LABEX P2IO 2 post-doc fundings

European contracts

 ENSAR2 (TNA ALTO, various JRA's, NA's)

proposed analysis

- difference IPN/CSNSM mainly explained by investments on ALTO related projects (LINO, MLLTrap, **nu-ball** etc) + PARIS + GASPARD led by IPN's group
- IPN's group budget suffered more from the absence of travel money to go to GANIL, not supported any more by IN2P3
- incredible increase of the funding sources, each generally insufficient to achieve a given project, time is money and money is more and more time consuming
- A simple extrapolation of 2015-to-2017 trend would indicate vanishing support from IN2P3 by the end of next five-year plan.

Publications

76 items published per year on the average (including letters, articles, proceedings, reviews)

Prizes

- A. Etilé (PhD student): laureate of the L'Oréal-UNESCO For Women In Science Award 2013
- Manea (PhD student): Springer Thesis Prize 2014
- **PhD students**: several poster/presentation prizes in international conferences
- S. Galès: Grand Prix Felix Robin French Physical Society (SFP) 2014
- Galès: Chevalier dans l'Ordre National de la Légion d'Honneur 2015
- A. Lopez-Martens: First Prize of the Joint Institute for Nuclear Research (Dubna, Russia) 2015
- K. Hauschild: First Prize of the Joint Institute for Nuclear Research (Dubna, Russia) 2015
- Galès: Fellow European Physical Society 2016
- F. Ibrahim: First Prize of the Joint Institute for Nuclear Research (Dubna, Russia) 2018
- **D. Verney**: First Prize of the Joint Institute for Nuclear Research (Dubna, Russia) 2018

Joint Institute for Nuclear Research

Teaching activities

- 7 University staff members (soon reduced to 5)
- + classes taught by non-teaching CNRS staff members (2) at M2 and Doctoral School levels
- + PhD students (almost 100%) have teaching duties
 - → from general physics at undergraduate level to specialized courses in subatomic physics

Academic responsibilities:

- Co-Head: Master-2 NPAC (Nuclei, Particles, Astroparticles, Cosmology)
- **Co-Head**: Master-1&2 of Science Nuclear Energy
- **Co-Head**: 1st year undergraduate (Licence Math-Physics-Computer science)
- Deputy Director: Doctoral School n°576 "PHENIICS" (Particles, Hadrons, Energy, Nuclei, Instrumentation, Imaging and Simulations)
- **Head**: several Teaching Units (Unités d'Enseignement)
- Membership: Local and National University Councils (CCSU, CNU, UPSud Councils...)

SSNET'16 International Workshop on Shapes and Symmetries in Nuclet: from Experiment to Theory Gif sur Yvette, November 7th - 11th 2016

Outreach/Valorisation (+ scientific events organization)

- **Organization** of the International Conference on Shapes and Symmetries in Nuclei from Experiment to Theory (yearly, Gif-sur-Yvette)

27 Countries, 130 participants (30 France, 12 Japan, 11 USA, 9 UK, 8 China, 7 Germany)
Physica Scripta Focus Issue celebrating the 40-year anniversary of the 1975 Nobel Prize in Physics to Bohr, Mottelson and Rainwater (http://iopscience.iop.org/article/10.1088/0031-8949/91/3/030301)

- Organization of various collaboration meetings (within ENSAR2, ALTO and AGATA related collaborations etc)
- MOOC "From particles to stars"
- Outreach movie TED Ed : Where does gold come from ?
- School lecturing and organization:
 - "Rencontres de Physique de l'infiniment grand à l'infiniment petit" (summer school at Orsay-Saclay campuses)
 - "De la physique aux détecteurs" & "Du détecteur à la mesure" (IN2P3 Instrumentation school for engineers and doctoral students)

Scientific achievements (2013 - 2018)

direct reactions First evidence of shape coexistence in the ⁷⁸Ni region

PHYSICAL REVIEW LETTERS

week ending 6 MAY 2016

First Evidence of Shape Coexistence in the ⁷⁸Ni Region: Intruder 0₂⁺ State in ⁸⁰Ge

A. Gottardo, ^{1,*} D. Vemey, ¹ C. Delafosse, ¹ F. Ibrahim, ¹ B. Roussière, ¹ C. Sotty, ² S. Roccia, ³ C. Andreoiu, ⁴ C. Costache, ² M.-C. Delattre, ¹ I. Deloncle, ³ A. Etilé, ⁵ S. Franchoo, ¹ C. Gaulard, ³ J. Guillot, ¹ M. Lebois, ¹ M. MacCormick, ¹ N. Marginean, ² R. Marginean, ² I. Matea, ¹ C. Mihai, ² I. Mitu, ² L. Olivier, ¹ C. Portail, ¹ L. Qi, ¹ L. Stan, ² D. Testov, ^{6,7} J. Wilson, ¹ and D. T. Yordanov ¹ Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France

Experimental setup at the PARRNe online mass-separator - ALTO

One central question

direct reactions
heavies and SHE
in-beam γ spectroscopy
α-clustering
equation of state

Laser ionized In isotopes record production

ALTO laser ion source

direct reactions heavies and SHE equation of state

Nuclear overlaps near the dripline

Light exotic nuclei extensively studied by the group using Direct Reactions

- Drip-line and beyond experimentally accessible
- Haloes, Molecular structures
- ab initio calculations tractable

- observation of a new decay branch, ⁶He + 4n,
- and of a puzzling reduction of the ¹¹Li(d, ³He)¹⁰He cross section
- → challenges this view

to be done:

- Test of <Be|Li> overlaps: 12Be(d,3He) at GANIL/LISE --under analysis
- New data on ¹⁰He from ¹⁴Be(p,p α) --under analysis

Clear decreasing trend

Failure of ab initio VMC overlaps?

direct reactions heavies and SHE in-beam γ spectroscopy equation of state

INTERMEDIATE

FORM

VIBRATIONAL

Spectroscopy of SHE with GABRIELA @ SHELS

Upgrade of GABRIELA (2012-2016)

PhD thesis (2016) and Phys. Rev. C 97 (2018) 054332

Commissioning (2016)

 γ and ICE decay of the 5/2⁺ isomer in ²⁵¹Fm : evidence for octupole collectivity

2017-2018: First physics campaigns

- p evaporation from ²⁵⁹Db* (submitted)
- Decay properties of ²⁵⁷Rf (to be published)
- Searh for isomers in ²⁵⁵Rf (PhD thesis of R. Chakma)

JINR PRIZE 2016

direct reactions heavies and SHE in-beam γ spectroscopy α-clustering equation of state strongly damped reactions

8-months long v-ball campain at ALTO

24 Clover Ge + BGO 10 Coaxial Ge + BGO 20 LaBr3 (FATIMA coll.) ou 36 PARIS phoswich

v-ball experimental campaign

Nov. 2017-June 2018. 10 experiments > 3000 h of beam time

The v-ball international collaboration

153 scientists from 16 nationalities and 37 institutions, among which 80 PhD students

MINORCA

(Miniball'N'ORgam CAmpaign)

(Joint SNO/NESTER effort already in 2014-2015)

- 15 ORGAM *anti-Compton shielded* efficiency 1.8% (at 1.3 MeV)
- 8 Miniball triple cluster detectors *with addback* efficiency: 6.3% (at 1.3 MeV)

 \rightarrow total :8.1%

PRL **118**, 222501 (2017)

PHYSICAL REVIEW LETTERS

PARIS

- hybrid spectrometer (Ge/LaBr3) high resolution, high efficiency
- ✓ On line with the LICORNE directional neutron source (pulsed n-beam, quasi monoenergetic)
- Calorimetry technique for reaction tagging
- ✓ fully digital DAQ, 200 channels

Triggered or Triggerless modes

Anomalies in the Charge Yields of Fission Fragments from the $^{238}\mathrm{U}(n,f)$ Reaction

The discovery frontier: First spectroscopy of 98,100Kr and 79Cu

Collaboration SEASTAR: CEA/SPhN, RIKEN, FLUO,

PRL 118, 242501 (2017)

PHYSICAL REVIEW LETTERS

week ending 16 JUNE 2017

Selected for a Viewpoint in *Physics* PRL **119**, 192501 (2017)

week ending 10 NOVEMBER 2017

Shape Evolution in Neutron-Rich Krypton Isotopes Beyond N = 60: First Spectroscopy of ^{98,100}Kr

Interpretation: Subtle competiton between coexisting shapes

Calc. (int. Gogny D1S): J. P. Delaroche et al. (CEA/DAM), T. Rodriguez (U. Madrid),

γ-ray spectrum of ⁸⁰Zn(p,2p)⁷⁹Cu

direct reactions heavies and SHE in-beam γ spectroscopy α -clustering equation of state

Hoyle state

α -clustering in self-conjugate nuclei revealed

PRL 119, 132501 (2017)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 29 SEPTEMBER 2017

www.elsevier.com/locate/physletb

Physics Letters B 755 (2016) 475-480

CHIMERA at LNS Catania

experiment

Alpha energy spectrum in the ¹⁶O* ref. frame $^{16}O^*$ from ^{40}Ca fragmentation ($\langle E^* \rangle = 52$ MeV)

Alpha clustering from excited expanding self-conjugate nuclei (16O, 20Ne, 24Mg)

Bogoliubov model

Constrained self-consistent relativistic Hartree Bogoliubov (RHB) model

both by imposing radial deformation PRL 111 (2013) 132503 PRC 89 031303(R) 2014

direct reactions heavies and SHE in-beam γ spectroscopy α-clustering equation of state strongly damped reactions

Survival of neutron-rich quasi-projectiles towards 0° in deep-inelastic collisions

Physics Letters B 779 (2018) 456-459

Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of ¹⁸O on a ²³⁸U target

J. Wilczynski, PLB 47B (1973) 484

Conclusion

0° is a maximum for nrQP production nrQP near the beam competition between 0° & grazing angle

Practical application:

Linag (high beam intensities)+ S3 (high resolution 0° spectrometer) @ GANIL

Project
(2018 – 2023 and longer term future)

- 2018-2023 Orsay NP's roadmap
 - while expecting for SPIRAL2/S3 operational
 - activities abroad where Orsay's NP community has leadership: must be pursued
 - Online commissioning of the new experimental setups at ALTO (MLLTrap, LINO, POLAREX)
 - ALTO's reliability enhancement: the ALTO2.0 project
 - Contribution to the development of S3-LEB in synergy with the development of ALTO (a CNRS researcher will be hired on that topic on 01/10/19),
 - ensure the success of the forthcoming AGATA+MUGAST campaign at GANIL
 - continue our commitment to the development of $AGATA \rightarrow contribution to AGATA white book$
 - (includes enhanced collaboration with GRETINA's community)
 - SHE spectroscopy program at ANL, at Dubna, at Jyväskylä, paving the way towards S3
 - (contributing to the development of SIRIUS)

ISOL direct reactions heavies and SHE auestion in-beam γ spectroscopy equation of state

ALTO: second phase of equipment

Instrumentation prepared within a long-term strategy

for low-energy ISOL physics at SPIRAL2-DESIR

laser pumping

3 families of ISOL based measurements

decay products

spectroscopy

- full exploitation of the ALTO RIB capabilities
- finalization of the "terra incognita" and "ReTIEN" related projects: POLAREX, MLL-Trap, LINO
- New beams developments (ISOL fusionevaporation, molecular beams)
- reinforced synergy with SPIRAL2/S3-LEB

« charting terra incognita »

« reaching terra incognita »

Towards the AGATA+MUGAST campaign at GANIL

Campaign starting in april 2019

- New Spiral 1 beams (low energy)
- ▶ AGATA
- . very high energy resolution
- . good efficiency: ~10% at 1.3 MeV in 2019 @ 18cm

(depending on number of clusters)

- MUGAST
- . one-layer of Silicon backward & 90 deg.
 - → well-suited for stripping measurements
- VAMOS : large acceptance spectrometer at 0 degree
- ► Unique coupling with ^{3,4}He cryogenic target
- ► About 3000 Si channels + 40 AGATA det.
- Intermediate step toward full GRIT array

Reaction	Spokesperson	
¹⁵ O(⁶ Li,d) ¹⁹ Ne	C. Diget, N. de Séréville	[A
¹⁴ O(p,p')	I. Stefan, F. de Oliveira	ppr
¹⁹ O (d,p) ²⁰ O	E. Clément, A. Goasduff	Approved
46Ar(3He,d)47K	A. Gottardo, M. Assié	ğ
⁵⁶ Ni(d,p) ⁵⁷ Ni	F. Flavigny, O. Sorlin	
⁵⁶ Ni(³ He,p) ⁵⁸ Cu	M. Assié	LoI
⁶⁹ Cu, ⁴⁶ Ar, ⁴⁹⁻⁵⁰ Sc (t, ⁴ He)	S. Bottoni	

AGATA@VAMOS (GANIL)

New Trapezoidal DSSDs of GRIT

Orsay NP pushing forward AGATA

40 institutions 350 collaborators

35% [23%] Efficiency (My=1 [30]): 10 % [5%] Today's arrays 55% [46%] Peak/Total (Mγ=1 [30]): Angular resolution 1° FWHM (1 MeV v/c=50%) 6 keV Today's arrays Rates: 3 MHz (My=1) 300 kHz (My=30)

-180 large volume 36-fold segmented Ge crystals in 60 triple-clusters -Digital electronics and sophisticated Pulse Shape Analysis algorithms

Allow operation of Ge detectors in position sensitive mode y-ray tracking

- FLUO's researchers are team leaders for:
 - Data processing,
 - Hard/software DAQ Support,
 - Data Analysis and Tracking,
 - Data distribution and reprocessing,
 - **AGATA Performance**
- Improvements of tracking code are on going at FLUO \rightarrow still much to be done

AGATA-GRETA collaboration has been set by FLUO \rightarrow Sharing experience between AGATA and GRETINA/GRETA Second AGATA-GRETINA tracking arrays

AGATA white book inputs: including physics case involving coupling to GRIT

direct reactions heavies and SHE in-beam γ spectroscopy

Heavy and SHE perspectives

- Operation and digitalization of GABRIELA@SHELS
- Opportunity @SHF: Xray fingerprinting of the heaviest nuclei
- Commissioning and day 1 experiments of SIRIUS@S3 (CEA, GANIL, IPHC, FLUO): 2 LoI submitted on the search for the dripline in No isotopes and high-K isomer properties of ²⁵⁶Rf
- Commissioning of MLLtrap@ALTO & transfer to DESIR
- Lifetime measurements & fine structure alpha spectroscopy of heavy nuclei
- Physics campaign at ANL with AGFA+Gammasphere physics starting in 2019
- AGATA white book project: measurement of fission barriers and gamma-ray strength function in super heavy nuclei

direct reactions heavies and SHE in-beam γ spectroscopy α-clustering equation of state strongly damped reactions

Nuclear physics at PERLE@Orsay

seize the opportunity of PERLE@Orsay for electron scattering off RIBs experiments

The PERLE@Orsay configuration

Courtesy W. Kaabi (LAL Orsay) (LHeC/FCC-eh and PERLE Workshop, 27-29 June 2018, Orsay, France)

the Orsay PERLE-based project DESTIN

[DEep STructure Investigation of (exotic) Nuclei] for the time being just an idea... European NP community around this idea is being gathered

→ proposal of an NA in ERINS (successor of ENSAR2 IA)

RH evolution in the next five years

- -1(7) Retirements: 1CR (direct reactions component) around or beyond 5 years: 3 DR and 3 emeriti possible departures
- -3 Departure : 1 MCF (2018, ISOL component), 1 PR, 1 CR (in-beam γ -spectroscopy component)
- Recruitment: 1CR (instrumentation S3-LEB & ALTO) 2019

-3(9)

immediate needs

CNRS: ISOL: 1 IR Laser, 1 CR accelerator technologies ISOL related

direct reactions: replacement of 1 departures

University: ISOL-platform and subatomic physics teaching: 1 MCF

Expectation on financial support

IN2P3 funding

Other funds: over fragmented

proposed analysis (reminding)

- difference IPN/CSNSM mainly explained by investments on ALTO related projects (LINO, MLLTrap, **nu-ball** etc) + PARIS + GASPARD led by IPN's group
- IPN's group budget suffered more from the absence of travel money to go to GANIL, not supported any more by IN2P3
- incredible increase of the funding sources, each generally insufficient to achieve a given project,
 time is money and money is more and more time consuming
- A simple extrapolation of 2015-to-2017 trend would indicate vanishing support from IN2P3 by the end of next five-year plan.

Expectations:

- support for Post-doc's and PhD's from IN2P3 too low
- IN2P3 investment money per permanent staff shows a dramatic trend between 2015 and 2017, it is interpreted (by us) as due to limited interest of IN2P3 management to our field
- total IN2P3 allocation in 2018 to FLUO's NP teams is around 60% of the one granted at the beginning (around 2010) of the previous five-year period
- 2018 budget: an exception or a new hope for next five-year period?
- → we request a reevaluation of the relative weight of nuclear physics in IN2P3 activities and an improvement in the quality of dialogue with our funding agencies in general.

SWOT analysis

STRENGTHS

- Number of projects under our leadership
- Local Research Infrastructure (ALTO)
- Excellent culture and results in PhD formation
- Very strong network of national and international relations
- Rather successful with grant calls

WEAKNESSES

- Number of Post-doc's & PhD's
- Dwindling financial resources
- Fragmentation of the financial support with no coherent scientific strategy behind (limited interest of IN2P3 management to the field)

OPPORTUNITIES

- lab unification in Orsay Valley
- University Paris Saclay
- PERLE@Orsay
- Strong implantation in different international installations: GANIL, RIKEN, ISOLDE/CERN, JINR
- unique Local Research Infrastructure (ALTO)

THREATS

- Chronic dwindling of financial resources
- Ambitious project of the community Spiral 2 phase 2 suspended
- Number of project per number of persons in the group
- Limited or difficult access to technical resources for small-to-medium scale projects within the future merged Orsay Lab. (more fear than threat ?)
- Limited visibility in University Paris Saclay

Gamma Tracking Array Concept

Highly segmented HPGe detectors

Synchronized digital electronics to digitize (14 bit, 100 MS/s) and process the 37 signals generated by crystals

HARDWARE

Event building time-stamped data

Global

level

Local

level

Energies, times, interaction points

 $(x,y,z,E,t)_i$

Pulse Shape Analysis of the recorded waves

SOFTWARE

Reconstruction of γ -rays from the hits

Analysis & correlation with other detectors

Improve the performance of AGATA: CSNSM is involved!

GEANT4 simulations versus measurements A. Korichi et al, NIM872(2017)80

Improvments of tracking code are on going at CSNSM But!
The main issue comes from PSA/basis fidelity

Issues with PSA to be understood and fixed for a better performance of AGATA

ANR OASIS (CSNSM): R&D

- -a better determination of the interaction positions within the detectors
- -correctly assign the number of interactions inside a detector segment

However, the specs P/T and efficiency can only be achieved with the full 4π array

From 21 to 30 crystals the effect is clear and not linear!

AGATA-GRETA collaboration has been set by CSNSM

Sharing experience between AGATA and GRETINA/GRETA
Devote effort to understand the limitations and explore ways to improve
the current performance for more physics output

The common collaboration meetings/synergies are valuable for EU/CSNSM and USA

AGATA Management Board and Teams

A. Gadea (Project Manager)

A. Boston, B. Million, A. Korichi, F. Recchia, H.Hess, P. Reiter (ASC) and W.Korten (ACC).

J. Gerl (LCM-GSI), E. Clement (LCM-GANIL)

per heavy elements studies at

AGFA (Argonne Gas Filled Analyser)
Gammasphere & focal plane decay station

In-beam/deacy γ -ray Spectroscopy and calorimetry

In-beam spectroscopy of ²⁵⁵Lr: information on a shell gap at Z=114 for super-heavy elements

(Single gamma-ray spectrum in delayed coincidence with recoils.

(b) Sum of recoil-gated γγ coincidence with transitions marked by ...

(c) same as (b) but for transitions marked by ---

S. Ketelhut et al, PRL 102(2009)212501 (JYFL- Finland)

Future experiment at ANL ²⁰⁹Bi(⁴⁸Ca,2n)²⁵⁵Lr (A. Korichi et al,) Improvment by a factor of 8 compared to JYFL is expected

Other approved experiments will also be carried out: 251Md, 253, 254No, 254, 256Rf

Collaboration: CSNSM, ANL, LBNL, Umass Lowel, JYFL, GANIL, IPNL, IPHC

The elusive isoscalar np pairing: the case of the fp shell

⁵⁶Ni (doubly magic) and ⁵²Fe (open-shell) have been investigated at GANIL through 2N-transfer reactions with a particle-gamma coincidence set-up.

→ Angular distribution for ⁵⁴Co g.s.

➡ Isoscalar pairing weak in the fp shell hindered by spin-orbit effects

Anomalies in the Charge Yields of Fission Fragments from the 238U(n,f) Reaction J. N. Wilson et al. Phys. Rev. Lett. 118, 222501 (2017)

Interpretation:

Spherical shell effects in the nascent fragments (S1) become much less important!

Fission modes

The case of ¹⁵F

- 2nd&3rd excitated states x10 times more stable (explained by the particular strucure of ¹⁵F)
- 2nd state Halo configuration => large spatial expansion => high gamma decay probablity. GSM calculation -> the fastest on the nuclear chart (¹¹Be is measured to have the fastest E1 gamma decay)
- · 2p decay favored

POLAREX: On Line Nuclear Orientation Low temperature (7 mk) + High magnetic field (10-100 T) + Neutron rich beam Funding ANR + IN2P3 (installed) **POLAREX** Tube cryo Cage de faraday **Funding P2IO** (ordered and partially delivered) Qualripole -Steerer Funding SESAME – Ile de France (Order beginning 2019) **ALTO Beam** Déflet eur 90° Funding ERM - UPSUD (Objet de la demande) *NIMA 859 (2017) + proceedings* (delivered) Off-line measurement ¹³⁹Ce beginning 2019 On-line commissioning end 2019

PolarEx: N = 50 (Phase 3)

Evolution of the well known « spherical » magic numbers far from stability :

→ There are already evidences of shell strength decrease (masses)

- $\triangleright \gamma$ -spectroscopy from β -decay of ⁸⁶Se :
- measurement of J^{π} for 1^{st} excited states (by A. Astier et al. accepted by PAC ALTO)
- \triangleright POLAREX : measurement of μ (86Br)

Results:

- Two independent measurements of J^{π}
- Access to residual interaction energies for various π - ν configurations

Evolution of the well known « spherical » magic numbers far from stability

- \triangleright Determination of J^{π} (g.s.) = 3/2 or a 5/2?
 - \Rightarrow It entirely depends on the proton behavior, since proton lies in the fp orbits for which very scarce information is known.
 - \Rightarrow Help in the description of the structure of the supposed doubly-magic ⁷⁸Ni (same N=50)
- ightharpoonup How to get ⁸³As at ALTO since it is not produced ? from β-decay of implanted ⁸³Ge (T_{1/2} = 1.855 s). [feasible thanks to the suitable half-life of ⁸³As (T_{1/2} = 13.4 s)]

Evolution of the well known « spherical » magic numbers far from stability

- \triangleright Determination of J^{π} (g.s.) = 3/2 or a 5/2?
 - \Rightarrow It entirely depends on the proton behavior, since proton lies in the fp orbits for which very scarce information is known.
 - \Rightarrow Help in the description of the structure of the supposed doubly-magic ⁷⁸Ni (same N=50)
- ightharpoonup How to get ⁸³As at ALTO since it is not produced ? from β-decay of implanted ⁸³Ge (T_{1/2} = 1.855 s). [feasible thanks to the suitable half-life of ⁸³As (T_{1/2} = 13.4 s)]

Rencontres d'été de physique de l'infiniment grand à l'infiniment petit

Objectif:

transmettre à des étudiants en physique de <u>niveau</u>
L3 ou équivalent, notre savoir et notre expérience
autour des thématiques de recherche: physique des
particules, physique nucléaire, astrophysique,
cosmologie, physique spatiale, instrumentation
associée et accélérateurs, applications (médicales,
Machine Learning, etc.).

→ 2 semaines de cours, visites, débats et séminaire

2013 : présence de Serge Haroche

2019 : 9ème édition avec Gérard Mourou pour partager son prix Nobel avec nos étudiants

Evidence for the Role of Proton Shell Closure in Quasifission Reactions from X-Ray Fluorescence of Mass-Identified Fragments

The PERLE@Orsay project

PERLE is a high current, multi-turn ERL facility (900 MeV),

designed to study and validate main principles of the Large Hadron Electron Collider (LHeC: 60 GeV)

LHeC would use a 3-pass energy recovery, recirculating linac with 20 GeV per pass and a current of

about 10 mA; the RF frequency would be 802 MHz

The Orsay realization of PERLE (called **PERLE@Orsay**) is a smaller version (500 MeV)

with the same design challenges and the same beam parameters:

Target Parameter	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalised Emittance $\gamma\epsilon_{x,y}$	mm mrad	6
Average beam current	mA	20
Bunch charge	рС	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor		CW

Courtesy W. Kaabi (LAL Orsay)

(LHeC/FCC-eh and PERLE Workshop, 27-29 June 2018, Orsay, France)

Only one existing e-RIB-scattering setup: SCRIT (Self-Confining Radioactive Ion Target)

- T. Suda, M. Wakasugi, T. Emoto, K. Ishii, S. Ito, K. Kurita, A. Kuwajima, A. Noda, T. Shirai, T. Tamae, H. Tongu, S. War and Y. Yano,
 - "First Demonstration of Electron Scattering Using a Novel Target Developed for Short-Lived Nuclei," Physical Review Letters **102** (10) (2009).
- M. Wakasugi, T. Emoto, Y. Furukawa, K. Ishii, S. Ito, T. Koseki, K. Kurita, A. Kuwajima, T. Masuda, A. Morikawa, M. Nakamura, A. Noda, T. Ohnishi, T. Shirai, T. Suda, H. Takeda, T. Tamae, H. Tongu, S. Wang, and Y. Yano, "Novel internal target for electron scattering off unstable nuclei," Physical Review Letters 100 (16) (2008).

Location of the SCRIT Facility in the RIKEN RI Beam Factory

taken from: M. Wakasugi Workshop on e-Ion collision at CEA Saclay (25-27 Apr. 2016)

Only one existing e-RIB-scattering setup: SCRIT (Self-Confining Radioactive Ion Target)

The Deep STructure Investigation of (exotic) Nuclei project :DESTIN

injection of ALTO-like RIBS into the ERL

Largely inspired by the pioneering SCRIT example

HCERES evaluation – Nuclear Structure and Dynamics

T Ohnishi et al Phys. Scr. T166 (2015) 014071

15/01/2019

The DESTIN project

Chancé et al (CEA Saclay) **ETIC** project within GANIL-2025 (2015) calculations within ERL hypothesis:

 $\text{I}_{\text{e}}\text{=}200$ mA $\text{N}_{\text{A}}\text{=}10^6$ trapped ions: $\mathcal{L}\simeq10^{29}\,$ should be achieved based on

[A.N. Antonov et al., Nucl. Instr. and Meth. A 637 60 (2011)] ELISE project GSI

PERLE@Orsay : 20 mA $\to \mathcal{L} \simeq 10^{28}$ is *probably* achievable for a **10**⁶ trapped RI population **on the principle**

but the dynamical e-beam-RI coupling should be investigated: first time with a ERL time structure e-beam instabilities? impact on ERL operation?

The DESTIN project: physics case

neutron number