

Search for VH→cc in CMS

Loukas Gouskos (CERN) on behalf of the CMS collaboration

Introduction

- LHC Run 1: Discovery of a Higgs boson with a measured mass:
 - m_H = 125.09 ± 0.24 GeV (~0.2%)
- Then: measure the Higgs particle properties & interactions
 - Inclusive production rates & interactions with vector bosons (W,Z, γ)
 - Already established in Run 1
 - Interactions with fermions
 - Recently established couplings to 3rd-generation fermions
- Next milestone: couplings to 2nd-gen fermions
 - **H** \rightarrow µµ: BR in SM ~2.2 x 10⁻⁴; Upper limit (UL) on µ = σ/σ_{SM}
 - CMS: μ < 2.9 (2.2) obs. (exp.)
 [Run1+2016] [HIG-17-019, PRL 122,021801 (2019)]
 - ATLAS: μ< 1.7 (1.3) obs (exp)

This talk

H→cc

$H \rightarrow cc$ at the LHC

Branching Ratio

10-2

 10^{-3}

gg

Zγ

10⁻⁴ 120 121 122 123 124 125 126 127 128 129

LHC Run 1: m_µ=125.09 +/- 0.24 GeV

- Motivation: Establish Higgs couplings to up-type, 2nd-generation quarks
 - Higgs-charm coupling can be significantly modified by the presence of BSM
- H→cc: very challenging to hunt at the LHC
 - small BR: 2.9 x 10⁻²
 - Very large backgrounds
 - $H \rightarrow bb$ is background in this search
 - **c-tagging** more challenging than b-tagging

Need novel tools and techniques to probe $H \rightarrow cc$ at the (HL-) LHC

- Approaches explored so far:
 - ▶ Direct H→cc search:

PRL 120 (2018) 211802

• ATLAS in Z(\rightarrow LL)H channel [2016] UL on $\mu = \sigma xBR / \sigma^{SM} xBR^{SM} < 110 (150) Obs (Exp)$

Exclusive decay modes with charmonium, $H \rightarrow J/\psi\gamma$

- ATLAS: 120 (100) x BR obs (exp) ; CMS: 220 (160) x BR obs (exp)
- Indirect bounds: $\kappa_c = y_c/y_c^{SM}$ from global fit to existing data: $\kappa_c < 6.2$ PRD92(2015)

results also from CMS HIG-17-028, PLB 792 (2019)

M_u [GeV]

CMS: EPJ C79 (2019) 94 ATLAS: PLB 786 (2018) 134

First direct H→cc search in CMS

Target the VH production mode

- VH production: very clear signature
 - Vector boson recoiling against Higgs boson
 - Main BKG: V+jets and ttbar
 - QCD significantly suppressed
 - Very little activity in the event

- Higgs kinematics:
 - Improved signal purity in higher-p_T
 - Signal acceptance falls rapidly
 - $_{\odot}~$ ~5% of σ_{VH} for $p_{T}(V){>}200~GeV$

General search strategy

Events categorized based on tr leptonic decays of V boson:

Channel	Resolved-jet	Merged-jet		
Z(→vv)H: 0L	p _T (Z) > 170 GeV			
W(→Lv)H: 1L	p _T (W) > 150 GeV	p _T (V) > 200 GeV		
Z(→LL)H: 2L	p _T (Z) > 50 GeV			

"Resolved-jet topology"

- Higgs decay products resolved in two AK4 (R=0.4) jets (di-jet)
- Probe larger fraction of the available signal cross-section

"Merged-jet topology"

- A single AK15 (R=1.5) jet to reconstruct the H→cc decay
 - R=1.5: good balance between purity and acceptance
- Potentially allows to better exploit the correlation between the two charms

Final result: combination of the two topologies based on $p_T(V)$

* L = e,μ

H→cc candidate

The challenge: Charm quark identification

Charm tagging on "AK4" jets

- Challenging: charm has intermediate properties between light <u>and</u> b-jets
 - Exploit Deep Neural Networks (DNN) [5 hidden layers, 100 nodes]

Charm tagging on "AK4" jets (II)

- Define two discriminants to separate c-jets from light and b-jets
 - CvsL: P(c) / [P(c) + P(light)] and CvsB: P(c) / [P(c) + P(b)]

- Calibration in data:
 - c-tagger reshaping scale factors derived via simultaneous fit to the 2D plane (CvsL x CvsB) in three different data samples
 - Z→LL +jets (light-jet enriched), W + c (c-jet enriched), ttbar (b-jet enriched)

Double-Charm tagging on "AK15" jets

CMS-DPS-2017-049, NIPS 2017 paper,

CMS-JME-18-002

- Advanced boosted jet tagger "DeepAK8" adapted on AK15 jets
 - multi-class classifier for top, W, Z, Higgs, and QCD jets
 - subdivided based on decay modes (e.g. $H \rightarrow bb, H \rightarrow cc, ..$)
 - can be aggregated for flavour tagging (e.g., bb vs cc vs light)
 - Advanced DNN to directly process jet constituent (i.e. PF candidates & sec. vtx)
 - **Important:** Mass decorrelation techniques to mitigate mass sculpting

Double-Charm tagging on "AK15" jets (II)

cc – tagging discriminant defined as:

$$\frac{score(Z \rightarrow c\bar{c}) + score(H \rightarrow c\bar{c})}{score(Z \rightarrow c\bar{c}) + score(H \rightarrow c\bar{c}) + score(QCD)}$$

Performance in MC:

- Calibration in data:
 - ◆ Use of proxy jets from gluon→cc with similar characteristics to signal jets
 - Two data samples [QCD multijet and γ+jets]

Search strategy

- Higgs candidate (H_{cand}): two highest "CvsL" AK4 jets
 - Further require: CvsL (max) >0.4 & CvsB (min)>0.2 for the leading jet
- FSR Recovery:
 - Improve mass resolution by recovering jets from final state radiation (FSR)

Up to ~5% improvement in mass resolution

- Event level separation: Maximize sensitivity by developing BDTs to separate signal from background
 - Inputs: H_{cand} properties, V boson properties, c-tagging discriminants, event kinematics & object correlations
 - Use separate BDT for each channel
 - VH(→cc) signal extracted by fitting the BDT shapes

Resolved-jet: Background estimation

- Main backgrounds (i.e. V+jets and ttbar) are estimated from data control samples
 - V+jets: split based on flavour composition (V+cc, V+bb/bc, V+bl/cl, V+udsg)
- Control samples selected by inverting the CvsB and CvsL requirements

- Simultaneous fit to SRs and CRs
 - Fit c-tagging discriminant shape in CRs and BDT shapes in SR

Resolved-jet: Background estimation (II)

ERN

Merged-jet: Search strategy

- H_{cand}: highest p_T AK15 jet [p_T>200 GeV, 50 < jet (mass) < 250 GeV]
 - Events categorized into three mutually exclusive categories based on the three WPs of the cc-discriminant
 - [High / Medium / Low purity (HP, MP, LP)]

cc-discriminant	>0.72	>0.83	>0.91
ε (H→cc)	46%	35%	23%
ε (V+jets)	5%	2.5%	1%
ε (H→bb)	27%	17%	9%

Merged-jet: Search strategy (II)

- Event-level separation: BDT to suppress major backgrounds [i.e. V+jets, ttbar]
 - use only event kinematics, <u>NOT</u> the intrinsic properties (flavour/mass) of H_{cand}
 - Search region: BDT > 0.5 [same for all channels]

BDT largely uncorrelated with <u>Higgs candidate mass</u> and <u>cc-discriminant</u>

m (H_{cand}) final fitted variable for signal extraction

CERN

Merged-jet: Background estimation

- Major backgrounds (i.e. V+jets and ttbar) estimated from data CRs
 - V+jets CR: low BDT score [i.e. BDT<0.5]</p>
 - one overall normalization for V+jets (in each of the HP/MP/LP categories)
 - ttbar CR: As the SR but invert N_{AK4} (NB: N_{AK4}<2 requirement applied in SR)
 - CRs are designed to have similar flavour composition as SRs
 - same cc-tagging requirement as the corresponding SR

Simultaneous fit to SRs and CRs

Systematic uncertainties

Source	Туре	0-lepton	1-lepton	2-lepton
Size of simulated samples	shape	\checkmark	\checkmark	\checkmark
Jet energy scale	shape	\checkmark	\checkmark	\checkmark
Jet energy resolution	shape	\checkmark	\checkmark	\checkmark
MET unclustered energy	shape	\checkmark	\checkmark	
c-tagging efficiency ^(*)	shape	\checkmark	\checkmark	\checkmark
Lepton efficiency	shape (rate ¹)		\checkmark	\checkmark
Pileup reweighting	shape	\checkmark	\checkmark	\checkmark
top $p_{\rm T}$ reweighting	shape	\checkmark	\checkmark	\checkmark
$p_{\rm T}({ m V})$ reweighting	shape	\checkmark	\checkmark	\checkmark
PDF	shape	\checkmark	\checkmark	\checkmark
Renormalization and factorization scales	shape	\checkmark	\checkmark	\checkmark
VH: $p_{\rm T}({\rm V})$ NLO EW correction	shape	\checkmark	\checkmark	\checkmark
Luminosity	rate	2.5%	2.5%	2.5%
MET trigger efficiency	rate	2%		
Single top cross section	rate	15%	15%	15%
Diboson cross section	rate	10%	10%	10%
VH: cross section (PDF)	rate	~	$\langle \checkmark \rangle$	\checkmark
VH: cross section (scale)	rate	\checkmark	$\langle \rangle$	\checkmark

^(*) Only affects VZ/VH processes (w/ Z/H \rightarrow cc or Z/H \rightarrow bb) in the merged-jet analysis

(1) Implemented as a rate uncertainty in the resolved-jet analysis

Dominant sources:

• statistical uncertainty of data control samples, c/cc-tagging, MC stats

Results

Post-fit distributions: resolved-jet

Post-fit distributions: merged-jet

VH(→cc) results

- First: validate search by measuring the VZ(\rightarrow cc) process
 - Same procedure as $VH(\rightarrow cc)$ but extract the $VZ(\rightarrow cc)$ signal

Topology	Significance obs (exp)	$\mu_{VZ(\rightarrow cc)}$
Resolved-jet	1.5 (1.2)	1.35 ^{+0.94} _{-0.95}
Merged-jet	0.9 (1.3)	0.69 ^{+0.89} -0.75

Results consistent with SM expectation within uncertainties

• Next: $VH(\rightarrow cc)$ results in each topology:

95% C.L. exclusion limit on $\mu_{VH(\rightarrow cc)}$

	Resolved-jet (inclusive)					Merged-jet (inclusive)			
	0L	1L	2L	All channels	0L	1L	2L	All channels	
expected UL	84	79	59	38	81	88	90	49	
observed UL	66	120	116	75	74	120	76	71	
μ < 75 obs. (38 $\binom{+16}{-11}$ $\binom{+35}{-18}$ exp. (1 σ) [2 σ])						< 71 obs.	(49 (+2	⁴ ₅) [+59] exp. (1σ) [2σ])	

Best fit signal strength

Topology	$\mu_{VH(\rightarrow cc)}$
Resolved-jet	41 ⁺²⁰ -20
Merged-jet	21 ⁺²⁶ -24

Combination

- Combination: resolved-jet: $p_T(V) < 300 \text{ GeV} / \text{merged-jet: } p_T(V) > 300 \text{ GeV}$
 - Systematics: correlated, but: c/cc-tagging efficiency & PDF, μ_R , μ_F for V+jets
- Validation with VZ(→cc) : $\mu_{VZ(\rightarrow cc)} = 0.55^{+0.86}_{-0.84}$ / signif: 0.7 σ obs. (1.3 σ exp.)

VH(\rightarrow cc) results with 35.9 fb⁻¹ (2016):

95% CL exclusion limit								
resolved-jet	merged-jet		CO	mbinatio	on			
$(p_{\rm T}({\rm V}) < 300{\rm GeV})$	$(p_{\rm T}({\rm V}) \ge 300{\rm GeV})$	0L	All channels					
45^{+18}_{-13}	73^{+34}_{-22}	79^{+32}_{-22}	72^{+31}_{-21}	57^{+25}_{-17}	37^{+16}_{-11} (+35)			
86	75	83	110	93	70 (-17 20			
	resolved-jet ($p_{\rm T}({\rm V}) < 300{\rm GeV}$) 45^{+18}_{-13} 86	$\begin{array}{c c} & 95\% \ {\rm CL\ exclusion\ line }\\ \hline {\rm resolved-jet} & {\rm merged-jet} \\ (p_{\rm T}({\rm V}) < 300 \ {\rm GeV}) & (p_{\rm T}({\rm V}) \ge 300 \ {\rm GeV}) \\ \hline 45^{+18}_{-13} & 73^{+34}_{-22} \\ 86 & 75 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

95% C.L. exclusion limit on $\mu_{VH(cc)}$

Summary

- First direct search for $H \rightarrow cc$ in CMS with 35.9 fb⁻¹ (2016 data) CMS-HIG-18-031
 - VH production mode, carried out in OL, 1L, 2L channels
- Exploits advanced methods for c/cc-identification and signal extraction
 - Effort pays off; strongest limit to date:

$$\mu < 70 \text{ obs. } \left(37 \left(^{+16}_{-10}\right) \left[^{+35}_{-17}\right]\right) \exp((1\sigma)[2\sigma])$$

Backup

Direct H→cc search [ATLAS]

- 2015+2016 (~36.1 fb⁻¹) data [PRL 120 (2018) 211802]
 - Target the Z(→LL)H production mode
 - Exploit charm tagging to suppress backgrounds
 - "Cut-&-Count" approach:
 - Four categories based on $p_T(cc)$ and N_c ; Fit m(cc) distribution for signal extraction

Direct H→cc search [ATLAS] (II)

- 2015+2016 (~36.1 fb⁻¹) data [PRL 120 (2018) 211802]
 - Target the Z(→LL)H production mode
 - Exploit charm tagging to suppress backgrounds
 - "Cut-&-Count" approach:
 - Four categories based on $p_T(cc)$ and N_c ; Fit m(cc) distribution for signal extraction

Observed (expected) upper limit on \mu = \sigma \times BR / \sigma^{SM} \times BR^{SM} < 110 (150)

Searches for exclusive decay modes

Z(H)

- Access κ_c via charmonium decays:
 - complementary to inclusive searches
 - Very rare process: BR ($H \rightarrow J/\psi\gamma$) = 2.99 x 10⁻⁶
- Both ATLAS and CMS carried out searches in this mode focusing on the μμ final state
 - Signal extraction: m(μμγ) [CMS] and m(μμγ) vs. m(μμ) [ATLAS]

ATLAS: BR< 3.5 x 10⁻⁴ obs. (3 x 10⁻⁴ exp.); 120 (100) x BRSM **CMS:** BR< 7.6 x 10⁻⁴ obs. (5.2 x 10⁻⁴ exp.); 220 (160) x BRSM

Sensitivity comparable to the direct H→cc search

 J/Ψ

 μ^{\neg}

CMS

Charm tagging on "AK4" jets: DeepCSV

DeepCSV discriminants:

Charm tagging on "AK4" jets: calibration

- Construct the 2D plane (CvsL x CvsB) in three different data samples
 - Split in different bins
- For a given bin, find the sample with the larger purity [e.g. "b"]
 - Initialize the three SF: SF_c, SF_b, SF_L = 1.
 - Calculate $\chi_b^2 = \frac{(SF_b \cdot N_{MC,b} N_{data,b})^2}{N_{data,b}}$ where contributions from other flavours

[e.g. c, light] are subtracted from $N_{data,b}$ using the corresponding SF.

- Repeat above step to the second purest selection and calculate another χ^2 using the SF from the previous steps. Repeat for the other sample
- This one iteration; repeat the last two steps until no improvement on χ^2
- Move to next bin.

Particle-based "AK4" jet tagging: DeepJet

- A multiclass classifier for: b, bb, c, uds, gluons
- Highlights from the architecture:

DeepBoostedJet(DeepAK8): Network architecture

- Advanced/Complex network architecture is necessary to achieve maximum performance
 1512.03385,1603.05027
 - Architecture based solely on 1D-CNN
 - Less computationally expensive
 - Fairly deep network to better exploit correlations between particles
 - CNN architecture inspired by the ResNet model for image recognition
 - Improves performance in deep networks and makes training easier
 - "Move" in particle triplets
 - Exploit correlations between nearby particles faster
- Also: A version decorrelated with the jet mass
 - Same architecture and inputs as nominal version
 - Use of adversarial networks to predict the jet mass

DeepAK8 [CMS-JME-18-002]:

CMS-JME-18-002

Meged-Jet tagger: Performance Higgs

DeepAK8 [CMS-JME-18-002]:

CMS-JME-18-002

Mass sculpting of BKG Jets

- Many of the ML-based algorithms "sculpt" the mass of the background jets -- signal-like structure.
- Is this a show-stopper?
 - Depends on the physics analysis
- What does "mass independence" means for a tagger?

Merged-jet: mass decorrelation

- Use adversarial training to regulate the behaviour of the network
 - Introduce a mass prediction network to predict the jet mass from the features extracted by the CNNs
 - ♦ It's loss (L_{MP}) is an indicator for mass correlation
 - Smaller L_{MP} more accurate mass prediction ; the features extracted by the CNNs have a higher correlation with jet mass
 - Introduce a joint loss: L = L_C -λL_{MP}, second term a penalty on mass correlation
 - Minimizing L -> simultaneously improve classification & reduce mass correlation
 - λ: hyperparameter balancing between performance and mass independence

CMS-JME-18-002

Resolved-jet: BDT inputs

	Variable	Description	0-lepton	1-lepton	2-lepton
H broberties	$m(H_{\text{cand}})$	H_{cand} mass	\checkmark	\checkmark	\checkmark
Ticana properties	$p_{\rm T} \left(H_{\rm cand} \right)$	H_{cand} transverse momentum	\checkmark	\checkmark	\checkmark
	$p_{\rm T}({ m V})$	vector boson transverse momentum	\checkmark	\checkmark	\checkmark
	m(V)	vector boson mass			\checkmark
	$m_T(V)$	vector boson transverse mass		\checkmark	
Verobartias	$p_{\rm T}^{\rm miss}$	missing transverse momentum	\checkmark	\checkmark	
v properties	$p_{\rm T}({\rm V})/p_{\rm T}(H_{\rm cand})$	ratio between vector and H_{cand} transverse momentum	\checkmark	\checkmark	\checkmark
	$CvsL_{max}$	<i>CvsL</i> likelihood of the leading- <i>CvsL</i> jet	\checkmark	\checkmark	\checkmark
c-tagging	$CvsB_{max}$	<i>CvsB</i> likelihood of the leading- <i>CvsL</i> jet	\checkmark	\checkmark	\checkmark
discriminants	$CvsL_{min}$	<i>CvsL</i> likelihood of the sub-leading- <i>CvsL</i> jet	$\langle \langle \rangle$	\checkmark	\checkmark
discriminants	$CvsB_{min}$	<i>CvsB</i> likelihood of the sub-leading- <i>CvsL</i> jet	$\backslash \checkmark$	\checkmark	\checkmark
	p_{Tmax}	$p_{\rm T}$ of the leading- <i>CvsL</i> jet	\checkmark	\checkmark	\checkmark
	p_{Tmin}	$p_{\rm T}$ of the sub-leading-CvsL jet	\sim	√	\checkmark
	$\Delta \phi(V, H)$	azimuthal angle between vector boson and <i>H</i> _{cand}	\checkmark	\checkmark	\checkmark
	$\Delta R(j_1, j_2)$	difference in angular position between leading- and sub-leading-CvsL jet		\checkmark	\checkmark
event kinematics/	$\Delta \phi(j_1, j_2)$	azimuthal angle between leading- and sub-leading-CvsL jet	\checkmark	$\langle \langle \rangle$	
	$\Delta \eta(j_1, j_2)$	difference in pseudorapidity between leading- and sub-leading-CvsL jet	\checkmark	\checkmark	\checkmark
object correlation	$\Delta \phi(\ell_1,\ell_2)$	azimuthal angle between leading- and sub-leading- $p_{\rm T}$ leptons			\checkmark
-	$\Delta \eta(\ell_1,\ell_2)$	difference in pseudorapidity between leading- and sub-leading- $p_{\rm T}$ leptons			\checkmark
	$\Delta\phi(\ell_{1(2*)}, j_1)$	azimuthal angle between (sub-)leading- $p_{\rm T}$ lepton and leading- $CvsL$ jet		\checkmark	$\checkmark *$
	$\Delta \phi(\ell_2, j_2)$	azimuthal angle between sub-leading- $p_{\rm T}$ lepton and sub-leading- $CvsL$ jet			\checkmark
	$\Delta \phi(\ell_1, p_{\mathrm{T}}^{\mathrm{miss}})$	azimuthal angle between leading-p _T lepton and missing transverse momentum		\checkmark	
	N _{aj}	number of small- <i>R</i> jets subtracted number of FSR-jets	\checkmark	\checkmark	\checkmark
additional activity	SÁ5	number of soft jets with $p_{\rm T}$ 5 GeV	\checkmark	\checkmark	\checkmark

merged-jet: BDT inputs

Variable	Description	0L	1L	2L
$p_{\rm T}({\rm V})$	vector boson transverse momentum	\checkmark	\checkmark	\checkmark
$p_{\rm T}$ (H _{cand})	H _{cand} transverse momentum	\checkmark	\checkmark	\checkmark
$ \eta(H_{cand}) $	absolute value of the H _{cand} pseudorapidity	\checkmark		
$\Delta \phi(V, H_{cand})$	azimuthal angle between vector boson and H _{cand}	\checkmark	\checkmark	\checkmark
$p_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse momentum		\checkmark	
$\Delta \eta(\mathbf{H}_{cand}, \ell)$	difference in pseudorapidity between H _{cand} and the lepton		\checkmark	
$\Delta \eta (H_{cand}, V)$	difference in pseudorapidity between H _{cand} and vector boson			\checkmark
$\Delta \eta (H_{cand}, j)$	min. difference in pseudorapidity between H _{cand} and small- <i>R</i> jets	\checkmark	\checkmark	\checkmark
$\Delta \eta(\ell, \mathbf{j})$	min. difference in pseudorapidity between the lepton and small- <i>R</i> jets		\checkmark	
$\Delta \eta$ (V, j)	min. difference in pseudorapidity between vector boson and small- <i>R</i> jets			\checkmark
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, {\rm j})$	azimuthal angle between \vec{p}_{T}^{miss} and closest small- <i>R</i> jet	\checkmark		
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	azimuthal angle between \vec{p}_{T}^{miss} and lepton		\checkmark	
m _T	transverse mass of lepton $\vec{p}_{\rm T}$ + $\vec{p}_{\rm T}^{\rm miss}$		\checkmark	
N_{aj}	number of small- <i>R</i> jets	\checkmark	\checkmark	\checkmark

Resolved-jet: postfit 0L, 1L

CMS

Resolved-jet: postfit 2L

CMS

Merged-jet: postfit 0L, 1L

ERI

Merged-jet: postfit 2L

CMS VH(→bb) [2016]

■ HIG-16-044

			Process	0-lepton	1-lepton	2-lepton low- $p_{\rm T}({\rm V})$	2-lepton high- $p_{\rm T}({\rm V})$
			Vbb	216.8	102.5	617.5	113.9
Channels	Significance	Significance	Vb	31.8	20.0	141.1	17.2
	expected	observed	V+udscg	10.2	9.8	58.4	4.1
0.1	1 5	0.0	tŧ	34.7	98.0	157.7	3.2
0-lepton	1.5	0.0	Single top quark	11.8	44.6	2.3	0.0
1-lepton	1.5	3.2	VV(udscg)	0.5	1.5	6.6	0.5
2-lepton	1.8	3.1	VZ(bb)	9.9	6.9	22.9	3.8
Combined	28	33	Total background	315.7	283.3	1006.5	142.7
Combined	2.0	0.0	VH	38.3	33.5	33.7	22.1
			Data	334	320	1030	179
			S/B	0.12	0.12	0.033	0.15