Search for HH in the bbyy final state with the ATLAS detector

JHEP 11 (2018) 040

Alan Taylor (The University of Edinburgh) on behalf of the ATLAS collaboration

30/07/2019, Higgs Hunting 2019, Orsay-Paris

THE UNIVERSITY of EDINBURGH

Introduction

- ➤ Higgs boson pair production is predicted in the SM and allows the possibility of measuring the Higgs boson self-coupling.
 - Destructive interference between diagrams results in a small cross section: $\sigma = 31.05$ fb at $\sqrt{s} = 13$ TeV —> Not yet sensitive to this with the current LHC datasets.

- For However, enhancements to non-resonant HH production can occur through an enhanced self-coupling ($\kappa_{\lambda} = \lambda_{\text{HHH}} / \lambda_{\text{SM}}$) or potentially BSM couplings (eg ttHH vertex).
- ➤ Various models also predict a new particle that can decay to pairs of Higgs bosons, referred to as resonant HH production.
- A search is performed for both resonant and non-resonant HH production in the bbyy final state.

Motivation for bbyy

- ➤ HH → bbyy is one of the most attractive ways to study HH production:
- ➤ Branching ratio is ~ 130 times smaller than the largest HH → bbbb **but:**
 - Photon ID can effectively reject multi-jet backgrounds.
 - Efficient di-photon trigger gives high signal efficiency.
 - Excellent photon energy resolution gives a narrow $H \rightarrow \gamma\gamma$ mass peak (σ_{CB} typically 1.6 GeV in ATLAS).

Data and MC samples

➤ Analysis uses 36.1 fb⁻¹ of data collected by ATLAS in 2015 + 2016.

Signal MC samples:

Approximate NLO SM ($\kappa_{\lambda} = 1$) HH using MadGraph + Herwig. LO varied κ_{λ} HH using MadGraph + Pythia8 used to re-weight NLO sample for κ_{λ} interpretation. NLO BSM resonant HH using Madgraph + Herwig.

Background MC samples:

Single Higgs background: most important are ggF, ttH and ZH but all are considered. $\gamma\gamma$ + jets: used in the background decomposition and to guide the choice of functional form.

Process	Generator	Showering	PDF set	σ [fb]	Order of calculation of σ
Non-resonant SM HH	MadGraph5_aMC@NLO	Herwig++	CT10 NLO	33.41	NNLO+NNLL
Non-resonant BSM HH	MadGraph5_aMC@NLO	Рутніа 8	NNPDF 2.3 LO	-	LO
Resonant BSM HH	MadGraph5_aMC@NLO	Herwig++	CT10 NLO	-	NLO
$\gamma\gamma$ plus jets	Sherpa	Sherpa	CT10 NLO	-	LO
ggH	POWHEG-BOX NNLOPS (r3080) [60]	Рутніа 8	PDF4LHC15	48520	$N^3LO(QCD)+NLO(EW)$
VBF	POWHEG-BOX (r3052) [61]	Рутніа	PDF4LHC15	3780	NNLO(QCD)+NLO(EW)
WH	POWHEG-BOX (r3133) [62]	Рутніа	PDF4LHC15	1370	NNLO(QCD)+NLO(EW)
qar q o ZH	POWHEG-BOX (r3133) [62]	Рутніа 8	PDF4LHC15	760	NNLO(QCD)+NLO(EW
$tar{t}H$	MADGRAPH5_aMC@NLO	Рутніа 8	NNPDF3.0	510	NLO(QCD)+NLO(EW)
gg o ZH	Powheg-Box (r3133)	Рутніа 8	PDF4LHC15	120	NLO+NLL(QCD)
$bar{b}H$	MADGRAPH5_aMC@NLO	Рутніа	CT10 NLO	490	NNLO(5FS)+NLO(4FS)
t-channel tH	MADGRAPH5_aMC@NLO	Рутніа 8	CT10 NLO	70	LO(4FS)
W-associated tH	MadGraph5_aMC@NLO	Herwig++	CT10 NLO	20	NLO(5FS)

Event selection

► $H \rightarrow yy$ event selection:

Two tight ID and isolated photons with $P_T / m_{yy} > 0.35$ (0.25) for the leading (subleading) photon.

Events are then sorted into categories with exactly 2 b-tags or 1 b-tag.

Two different selections are then used in the analysis:

➤ Loose selection:

Used for resonant masses between 260 and 500 GeV and the κ_{λ} interpretation.

jet $P_T > 40$ (25) GeV m_{bb} in the interval [80,140] GeV

Resonant analysis only:

$$|m_{yy} - m_H| < 4.7 \text{ GeV}$$

➤ Tight selection:

used for resonant masses between 500 GeV and 1 TeV and the limit on the SM cross-section.

jet $P_T > 100$ (30) GeV m_{bb} in the interval [90,140] GeV

Resonant analysis only:

 $|m_{\gamma\gamma}$ - $m_H|$ < 4.3 GeV

➤ Resonant analysis only:

The di-jet Higgs candidate 4-vector is rescaled such that its invariant mass is equal to 125 GeV

Improves the m_{yybb} resolution, particularly at low m_X

Background decomposition

- ➤ Studied using a 2x2D sideband method where photon identification and isolation requirements are loosened.
- Flavour information extracted from the truth information in the Monte Carlo sample.
- In the 2-tag category which dominates the sensitivity, the background is mostly made up of the irreducible γγbb.

0-tag category used for cross checks only

Signal extraction (non-resonant)

For the non-resonant analysis, the signal is extracted by performing a fit to the diphoton mass, m_{yy} using a double-sided Crystal ball to model the signal and the single Higgs background and an exponential to model the continuum background.

Signal extraction (resonant)

For the resonant analysis, the signal is extracted by performing a fit to the four-body mass, m_{yyjj} using a Gaussian with exponential tails as signal model and a Novosibirsk (exponential) for the loose (tight) selection.

Results (non-resonant)

- ➤ Single Higgs backgrounds are fixed to their SM expectation in the fit.
- ➤ Limits on the SM HH cross-section at 95% CL:

	Observed	Expected	-1σ	$+1\sigma$
$\sigma_{gg \to HH} \text{ [pb]}$	0.73	0.93	0.66	1.4
As a multiple of $\sigma_{\rm SM}$	22	28	20	40

- \triangleright Selection efficiency parameterised as a function of κ_{λ} for the interpretation.
- \blacktriangleright κ_{λ} is observed (expected) to be constrained at 95% CL to -8.2 < κ_{λ} < 13.2 (-8.3 < κ_{λ} < 13.2).

Results (resonant)

- Largest deviation from the background only hypothesis is 480 GeV (local significance of 1.2 σ). No significant excesses observed
- ➤ Observed limits vary from 1.1 pb at $M_X = 260$ GeV to 0.12 pb at $M_X = 1$ TeV.

Summary

- ➤ ATLAS has performed a search for HH in the bbyy final state.
- ➤ No significant excesses observed in either the non-resonant or resonant search.
- Limits set in the non-resonant search: $\sigma_{HH} = 22^*\sigma_{SM}$ Higgs boson self-coupling constrained to be in the interval -8.2 < κ_{λ} < 13.2
- \triangleright Limits in the resonant search range between 1.1 pb to 0.12 pb for 260 < M_X < 1000 GeV
- ➤ Looking forward, ATLAS has now collected ~ 140 fb-1 of data.

 HH → bbyy is statistically limited so can expect large sensitivity increase with the full Run 2 data set.

Back-up

Systematic uncertainties

- ➤ Analysis is almost entirely statistically limited.
- ➤ The largest systematic uncertainties are: conservative 100% theory uncertainty on ggF + Heavy Flavour production. Photon ID, JES/JER and flavour tagging.

Source of systematic uncertainty		% effect relative to nominal in the 2-tag (1-tag) category Non-resonant analysis Resonant analysis: BSM HH							
		SM HH signal		Single- H bkg		Loose selection		Tight selection	
Luminosity Trigger Pile-up modelling		$\pm 2.1 \\ \pm 0.4 \\ \pm 3.2$	(± 2.1) (± 0.4) (± 1.3)	$\pm 2.1 \\ \pm 0.4 \\ \pm 2.0$	$(\pm \ 2.1)$ $(\pm \ 0.4)$ $(\pm \ 0.8)$	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 4.2)	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 3.8)
Photon	identification isolation energy resolution energy scale	±2.5 ±0.8	(±2.4) (±0.8) -	±1.7 ±0.8	(± 1.8) (± 0.8) - -	± 2.6 ± 0.8 ± 1.0 ± 0.9	(± 2.6) (± 0.8) (± 1.3) (± 3.0)	± 2.5 ± 0.9 ± 1.8 ± 0.9	(± 2.5) (± 0.9) (± 1.2) (± 2.4)
Jet	energy resolution energy scale	$\pm 1.5 \\ \pm 2.9$	(± 2.2) (± 2.7)	±2.9 ±7.8	$(\pm 6.4) (\pm 5.6)$	$\pm 7.5 \\ \pm 3.0$	(± 8.5) (± 3.3)	$\pm 6.4 \\ \pm 2.3$	(± 6.4) (± 3.4)
Flavour tagging	b-jets c -jets light-jets	± 2.4 ± 0.1 < 0.1	(± 2.5) (± 1.0) (± 5.0)	± 2.3 ± 1.8 ± 1.6	(± 1.4) (± 11.6) (± 2.2)	± 3.4 (± 2.6) ± 2.5		(±2.6) - -	
Theory	$PDF+\alpha_{S}$ $Scale$ EFT	$\pm 2.3 \\ +4.3 \\ -6.0 \\ \pm 5.0$	(± 2.3) $(+4.3)$ (-6.0) (± 5.0)	±3.1 +4.9 +7.0	$(\pm \ 3.3)$ $(+ \ 5.3)$ $(+ \ 8.0)$ n/a	n/a n/a n/a n/a		1 1	n/a n/a n/a n/a

HH Combination

- ATLAS HH Combination sets an upper limit on the SM HH cross section of 6.9 * SM (10.0 * SM expected) and constrains the Higgs boson self-coupling to $-5.0 < \kappa_{\lambda} < 12.0$.
- At present, HH → bbyy is the 3rd most sensitive channel to SM HH production and the most sensitive channel for large BSM κ_λ modifications.
- ➤ HH → bbyy with the best sensitivity to resonant masses less than 350 GeV.

