

Di-Higgs Results from ATLAS

Suyog Shrestha (Ohio State University)

On behalf of the ATLAS Collaboration

Higgs Pair Production

- Coupling strength directly related to Higgs potential
 - $-\lambda_{hhh}$ determined in SM through vev & m_h , its measurement is test of Higgs potential
- λ_{hhh} can be measured at LHC through observation of Higgs boson pair production
 - $-\,$ Potential enhancement of cross-section due to BSM physics and modified λ_{hhh}

Di-Higgs → Diverse Final States

Channel	Lumi. (fb^{-1})	Reference		
\overline{bbbb}	36.1	JHEP01(2019)030		
$\overline{b} \bar{b} \tau \bar{\tau}$	27.5-36.1	PRL 121.191801		
$-bar{b}\gamma\gamma$	36 .1	JHEP11(2018)040		
$-b\bar{b}WW^*$	36 .1	JHEP04(2019)092		
WW^*WW^*	36.1	JHEP05(2019)124		
$\overline{WW^*\gamma\gamma}$	36.1	EPJC78(2018)1007		

- studied so far **Latest Results** Will present a selection of 27 – 139 fb⁻¹ $b\bar{b}b\bar{b}(VBF)$ ATLAS-CONF-2019-030 126 results $b\overline{b}WW^*$ 139 In prepration
- Di-Higgs decay leads to diverse final states
- Some of highest BRs and cleanest channels

HH→bbbb

JHEP 01 (2019) 030

- "Resolved" and "Boosted" topologies targeting nonres/low-mass and high-mass resonances respectively
- Reconstruct 2 Higgs boson candidates from 4 b-jets
- Biggest background is QCD multijet, shape from 2 btag sample while normalization comes from fit to sidebands
- For top-quark, shape from MC while normalization from from fit to data
- Final discriminant is m_{HH}, perform fit to m_{HH}

HH→bbγγ

JHEP 11 (2018) 040

- Fairly clean signature with two photons and two b-jets
- SR categories according to #b-jets (1 and 2)
- Bkg: Fit exponential + DSCB function in 0-tag region
- Perform unbinned fit to m_{vv} (m_{HH}) non-res (res) case

HH→bbττ

- Target final states with e/μ and hadronic-τ, together with 2 bjets and MET
- Train BDT with several discriminating variables in $\tau_{lep}\text{+}\tau_{had}$ and τ_{had} + τ_{had} channels
- Dominant backgrounds: top-quark and Z+HF, constrained in data CR
- Signal extraction through fit to BDT output

HH->bbWW* JHEP 04 (2019) 092

- Resolved and boosted event selection targeting low-mass and high-mass regions respectively
- Most SM bkgs from MC simulation, except:
 - Top bkg normalized in dedicated CR in resolved case
 - Multijet bkg from data-driven method
- Count events in m_{HH} windows for resonant (resolved) or fit m_{HH} shape (boosted)

HH→WW*WW*

- In addition to Higgs pair, also search for heavier S bosons
- Data-drive background estimate for dominant V+jets, WZ, and misidentified charge while MC simulation for smaller backgrounds
- Cut & count analysis exploiting kinematics in various #lepton bins

- Select at least 2 photons,
 1 lepton, & 2 central jets
- Require $pT_{\gamma\gamma} > 100 \text{ GeV}$ for high mass resonances
- Bkg from m_{vv} sidebands
- Fit m_{νν} spectrum

Combination: Non-Resonant

arXiv: 1906.02025

• Simultaneous fit to data for signal cross-section and nuisance parameters (for statistical and systematic uncertainties), using the CLs approach

95% CL limit for $\kappa_{\lambda} = 1$:

6.9 (10) X SM obs. (exp.)

95% CL confidence intervals:

 κ_{λ} : obs. [-5,12] (exp. [-5.8, 12])

Combination: Resonant

EWK Singlet:

Exclusion limits in $(m_s, \sin \alpha)$ and $(\sin \alpha, \tan \beta)$

hMSSM:

Exclusion limits in (mA, tanβ)

New Result in bbll+MET channel

- New channel targeting bbll+MET final state
- Can be sensitive to bbZZ, bbWW, and bbtautau
- Dominant backgrounds ttbar and Z+HF from CRs
- DNN for signal vs background classification with multi-class output

	-2σ	-1σ	Expected	$+1\sigma$	+2 σ	Observed
$\sigma(gg \to HH)$ [pb]	0.5	0.6	0.9	1.3	1.9	1.2
$\sigma\left(gg\to HH\right)/\sigma^{\rm SM}\left(gg\to HH\right)$	14	20	29	43	62	40

New Result in 4b channel (VBF)

- First analysis targeting VVHH vertex
- Analysis strategy similar to other 4b analysis with two 2 VBF jets in opposite hemispheres
- Dominant QCD multijet bkg estimated from data in 2-btag CR
- Signal extracted from fit to m_{4b} shape

Conclusion & Outlook

- Search for diHiggs production and measurement of the Higgs trilinear self-coupling is one of the major goals of the (HL-) LHC
- Several channels with high BRs and/or clean final states have been studied by ATLAS so far
- First combination of all analyses with 2015-16 data completed, and two more analyses public now
- No enhanced Higgs pair production observed yet
- Most stringent limit set by the combination of ATLAS analyses using 2015-16 data
- Stay tuned for more results with full run2 data