

Chiara Amendola

on behalf of the CMS Collaboration

Higgs Hunting July 30, 2019

Non-resonant HH production

- Unique probe of the B.E.H. mechanism
 - provides access to the measurement of the Higgs self-coupling $\boldsymbol{\lambda}$
 - brings information on the shape of the Higgs potential

*State-of-the-art NNLO prediction of ggF cross section at 13 TeV: 31.05 $^{+2.2\%}_{-5.0\%}$ fb JHEP 05 (2018) 059 In the 2016 analyses, $\sigma_{ggF}(13TeV) = 33.49^{+4.3\%}_{-6.0\%}$ fb is used 10.23731/CYRM-2017-002

C. Amendola (LLR)

Resonant HH production

Look for a new narrow resonance X with mass m_X > 2m_H

- Not predicted in the SM, but in several extensions
- Different theoretical scenarios, but similar signature
- CP-even spin-0 or spin-2 particles predicted
- Need to cover a wide mass range:

MSSM/2HDM	250 to 350 GeV	Phys. Rep. 516 (2012) 1
Singlet Model	250 GeV to 1 TeV	J. Z Phys C 75 (1997) 17
Warped Extra Dimensions	250 GeV to 3 TeV	Phys. Rev. Lett. 83, 3370

Final states

Rich set of final states accessible at the LHC 2016 (35.9 fb⁻¹) CMS public analyses:

- Trade-off between BR and purity
- coverage of different phase spaces
- different sensitivity in different mass ranges

$HH \rightarrow bbbb$ (non-resonant)

Two searches performed:

- 4 resolved b-tagged jets (best sensitivity to SM), results shown here
- one bb pair highly boosted (sensitive to specific BSM topologies)

Main challenge: QCD background contamination

- b-tag is crucial, used from trigger level (3 bjets)
- BDT technique optimised for SM HH signal
- Dedicated data-driven method for QCD estimation: hemisphere mixing
- Signal extraction from BDT output

Events

residuals

CMS

h Eh E clanati

NEW! JHEP04 (2019) 112 NEW! JHEP01 (2019) 040

Mixed Event

Hemisphere library

filled in 1st nass, queried on 2st

C. Amendola (LLR) Original Event

break in two bemispheres

HH→bbbb (resonant)

NEW! JHEP08 (2018) 152 PLB 781 (2018) 244

Low mass Resolved

- At least 3 b-tagged jets
- Data-driven QCD estimation from sidebands of Higgs candidates masses

High mass Boosted + Semi-boosted

- 2 large-area jets or 1 large-area jet + 2 jets, passing b-tag or double-b discriminator
- QCD background measured from sidebands of large-area jet mass and double-b discriminator

Excluded mass ranges

Radion: 260-280 GeV; 300-450 GeV; 480-1120 GeV; no exclusion in high mass region

Graviton: 320-450 GeV; 480-720 GeV; no exclusion in high mass region

(backup)

HH->bbVV

Resonant and non-resonant searches performed

- Event categories: bbee, bbμμ, bbeμ
- Dominant backgrounds: tt (irreducible), DY
 - Data-driven DY estimation
- DNN to improve signal-background separation

JHEP 01 (2018) 054

C. Amendola (LLR)

Higgs Hunting

$HH \rightarrow bb\tau\tau$

PLB 778 (2018) 101

Data

Multijet Droll-Yon Other bkg

35.9 fb⁻¹ (13 TeV)

Comprehensive set of results on resonant and non-resonant searches

- Final states: $(e\tau_h, \mu\tau_h, \tau_h\tau_h) + 2$ jets
- Categorisation on number (1/2) of b-tagged jets
 - Boosted category: only 1 b-tagged large-area jet + substructure requirements
- BDT technique to reject tt background in $e\tau_h$, $\mu\tau_h$ channels
- Signal extraction from kinematic variables:
 - Resonant search: kinematic fit of HH decay (fit based on 4-momenta of the τ and b candidates and on \vec{p}_{τ}^{miss})

CMS

channel

resolved 2b τ.τ.

$HH \rightarrow bb\gamma\gamma$

NEW! PLB 788 (2019) 7

Resonant and non-resonant searches performed: most sensitive channel to SM HH

- Main backgrounds: nγ+jets, single-H
- Categorisation in MVA and reduced mass:

$$M_X = m_{\gamma\gamma bb} - (m_{bb} - m_H) - (m_{\gamma\gamma} - m_H)$$

Signal extraction through 2D likelihood $m_{\gamma\gamma} imes m_{bb}$

 10% improvement w.r.t. 1D fit on m_{γγ}: better discrimination against single-H

Combination: resonant searches

Different sensitivities in different regions

NEW! Phys. Rev. Lett. 122, 121803

- Limits also set for spin-2 hypothesis
- No significant excess observed

Combination: non-resonant production NEW! Phys. Rev. Lett. 122, 121803

SM combined limit: 22 (13) $\times \sigma_{SM}$

 Run I combination obs (exp) limit: 43 (46)×σ_{SM}

BSM obs (exp) constraints:

 $-11.8 < k_{\lambda} < 18.8 \ (-7.1 < k_{\lambda} < 13.6)$

BSM benchmarks

Producing samples for all the combinations of couplings would be computationally prohibitive

Anomalous couplings clustering strategy used in all analyses: JHEP 04 (2016) 126

Parameter space divided into 12 regions (+ SM + λ = 0 scenarios) with similar kinematics

Perspectives for HH searches

Getting closer to the observation of SM Higgs pair production:

22 (13) $\times \sigma_{SM}$ with 35.9 fb⁻¹

- the single analyses are constantly improving
- full Run II statistics: \sim 150 fb⁻¹

HL-LHC latest projections

Projected sensitivity of the combination of the 4 existing analyses + rare but clean bbZZ(4 ℓ)

- DELPHES fast parametric simulation: upgraded CMS response (see Elisa Fontanesi's talk in this conference)
- PU = 200, *L* = 3000 fb⁻¹

Significance		95% CL limit on $\sigma_{\rm HH} / \sigma_{\rm HH}^{\rm SM}$		
Stat. + syst.	Stat. only	Stat. + syst.	Stat. only	2016 obs
0.95	1.2	2.1	1.6	75
1.4	1.6	1.4	1.3	31
0.56	0.59	3.5	3.3	79
1.8	1.8	1.1	1.1	24
0.37	0.37	6.6	6.5	-
2.6	2.8	0.77	0.71	22
	Signifi Stat. + syst. 0.95 1.4 0.56 1.8 0.37 2.6	Significance Stat. + syst. Stat. only 0.95 1.2 1.4 1.6 0.56 0.59 1.8 1.8 0.37 0.37 2.6 2.8	Significance 95% CL lim Stat. + syst. Stat. only Stat. + syst. 0.95 1.2 2.1 1.4 1.6 1.4 0.56 0.59 3.5 1.8 1.8 1.1 0.37 0.37 6.6 2.6 2.8 0.77	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Projected constraints on k_{λ} :

[0.35, 1.9] at 68% CL [-0.18, 3.6] at 95% CL

HH searches are an excellent case for HL-LHC

Conclusion

- Non-resonant and resonant Higgs pair production searches are performed in 4 different channels with 2016 data
- Different channels have different sensitivities
 - The combination of channels brings a significant improvement: obs (exp) 22 (13) $\times \sigma_{SM}$ with 35.9 fb⁻¹
- The 2016 analyses performed better than the pre-existing predictions!
 - Advanced analysis techniques not fully exploited yet (e.g. DNN)
 - The observation of the SM Higgs pair production is definitely within reach of HL-LHC

$HH \rightarrow bbbb$ (non-resonant)

NEW! JHEP04 (2019) 112 **NEW!** JHEP01 (2019) 040

HH→bbbb (resonant)

NEW! JHEP08 (2018) 152 PLB 781 (2018) 244

Low mass Resolved

- At least 3 b-tagged jets
- Data-driven QCD estimation from sidebands of Higgs candidates masses

High mass Boosted + Semi-boosted

- 2 large-area jets or 1 large-area jet + 2 jets, passing b-tag or double-b discriminator
- QCD background measured from sidebands of AK8 jet mass and double-b discriminator

Excluded mass ranges

Radion: 260-280 GeV; 300-450 GeV; 480-1120 GeV; no exclusion in high mass region

Graviton: 320-450 GeV; 480-720 GeV; no exclusion in high mass region

C. Amendola (LLR)

Higgs Hunting

$\textbf{HH}{\rightarrow}\textbf{bbVV}$

JHEP 01 (2018) 054

$\text{HH}{\rightarrow}\text{bb}\tau\tau$

PLB 778 (2018) 101

 $HH{\rightarrow}bb\gamma\gamma$

NEW! PLB 788 (2019) 7

