Higgs studies on full Run2 differential measurements with ATLAS

Lailin Xu

Brookhaven National Laboratory On behalf of the ATLAS Collaboration

Higgs Hunting 2019, July 29-31, Orsay-Paris

Introduction

- Why fiducial and differential cross section measurements?
 - Important test of the SM (e.g. perturbative QCD calculations)
 - Minimal model dependence, easier for reinterpretation (EFT, couplings, etc)
 - Sensitive probe to physics beyond the SM
 - Low p_{T} region sensitive to light quark Yukawa couplings
 - High $p_{\rm T}$ region sensitive to potential new particles in ggF loop
- First full run 2 (139 fb⁻¹) measurements from ATLAS:
 - Fiducial cross sections in $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$
 - Differential cross sections:
 - p_{T}^{4l} , N_{jets} in 4l fiducical region
 - $p_{T}^{\gamma\gamma}$, $Iy_{\gamma\gamma}I$, N_{jets} , p_{T}^{j1} , m_{jj} , $\Delta\phi_{jj}$ in $\gamma\gamma$ fiducial region
 - Combination of $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$:
 - Total cross section
 - $p_{\mathrm{T}}^{\mathrm{H}}$ in extrapolated phase space
 - Interpretations of differential measurements

Theoretical predictions

• MC generators and cross-section predictions

Process	Generators	Accuracy	Cross-section normalizations	Fraction [%]
	Powheg-Box v2 (NNLOPS)	NNLO QCD in ly _H l	N ³ LO in QCD, NLO EW corrections	87.2
ggF	MG5_aMC@NLO FxFx	0,1,2jet @NLO	-	
VBF	Powheg-Box v2	NLO QCD	(approx.) NNLO in QCD, NLO in EW	6.8
VH	Powheg-Box v2 (MiNLO)	NLO QCD	qq/qg: NNLO in QCD, NLO in EW; gg: NLO+NLL in QCD	4.0
ttH	Powheg-Box v2	NLO QCD	NLO in QCD, NLO in EW	
tH	MG5_aMC@NLO	NLO QCD	NLO in QCD	1.1
bbH	MG5_aMC@NLO	NLO QCD	NNLO (NLO) in QCD for 5FS (4FS)	0.9

NLO QCD MC is the minimum requirement

Cross sections taken from the state-of-the-art theory predictions

How to measure fiducial and differential cross sections

• General method:

$$\sigma_{\rm fid} = \frac{N^{\rm sig}}{c_{\rm fid} \mathcal{L}_{\rm int}}$$

- Signal extraction, N_{sig}:
 - Signal events extracted from a m_{4l} or $m_{\gamma\gamma}$ fit, given the excellent resolution
 - Background constrained from data sideband
- Correction factor (unfolding), C_{fid}:
 - To unfold detector efficiency and resolution effect
 - Obtained from MC simulation: ~49% for 4I, ~71% for $\gamma\gamma$
 - Leakage from outside fid. region is found to be small, ${\sim}2\%$
- Differential cross section:
 - In each bin of a differential distribution, signal events are extracted from a m_{4l} or $m_{\gamma\gamma}$ fit
 - Unfolding:
 - Response matrix method (default method for 4I)
 - Bin-by-bin correction factor method (default method for γγ)

For fiducial measurements: $C_{\text{fid}} = \frac{N_{Reco.}}{N_{Fid.}}$

ATLAS-CONF-2019-025

Reconstructed observables

- + 316 events observed in $115 < m_{4l} < 130 \text{ GeV}$
 - With expected signal events: 206 \pm 13
 - ZZ background constrained from data sideband in a simultaneous fit \rightarrow reduce modelling uncertainties
 - Expected total background: 97 \pm 6

ZZ normalization factors are also obtained in bins of p_{T}^{4l} , N_{jets}

Cross section measurements

- Fiducial definition
 - Leptons (dressed): $p_T > 20$, 15, 10, 5 GeV, $l\eta l < 2.7$
 - Jets: anti-k_T4 jets with $p_T > 30$ GeV, lyl < 4.4
 - $m_{12} \in (50, 106) \text{ GeV}, m_{34} \in (12, 115) \text{ GeV}$
 - m_{4l} ∈(105, 160) GeV
 - (Details in the backup)
- Measured fiducial cross sections:
 - $-\sigma_{fid} = 3.35 \pm 0.30$ (stat.) ± 0.12 (syst.) fb
 - Still statistically limited
 - Consistent with SM prediction of 3.41 ± 0.18 fb, with *p*-value of 85%
- Unfolding
 - Response matrix method as the default
 - Cross checked with bin-by-bin correction factor method

Same-flavor (4e, 4μ) cross sections probe the interference effects between the identical final state fermions(~10%)

Differential results: p_T^{4l}

Higgs p_T :

- Sensitive to perturbative QCD calculations
- Low p_T region sensitive to light quark Yukawa couplings
- High p_T region sensitive to potential new particles in ggF loop

ggF predictions by NNLOPS and MG5-FxFx are normalized to the N³LO total cross section

Consistent with SM (NNLOPS) prediction: p-value 11%

Differential results: N_{jets}

N_{jets}: sensitive to higher-order QCD calculations

ggF predictions by NNLOPS and MG5-FxFx are normalized to the N³LO total cross section

Consistent with SM (NNLOPS) prediction: p-value 87%

Η→γγ

ATLAS-CONF-2019-029

Cross section measurements

- Fiducial definition:
 - γ : p_T > 25 GeV, $l\eta l$ < 2.37 reject if 1.37 < $l\eta l$ < 1.52
 - Jets: anti-k_T4 jets with $p_T > 30$ GeV, lyl < 4.4
 - $m_{\gamma\gamma} \in (105, 160) \text{ GeV}$
- Measured fiducial cross sections:
 - $-\sigma_{fid} = 65.2 \pm 4.5 \text{ (stat.)} \pm 5.6 \text{ (syst.)} \pm 0.3 \text{ (theo.) fb}$
 - Becoming systematic limited
 - Leading syst.: Background modelling and photon energy resolution
 - Consistent with SM prediction of 63.6 ± 3.3 fb
- Unfolding
 - Bin-by-bin correction factor unfolding as the default
 - Cross checked with response matrix method

Differential results: $p_{T}^{\gamma\gamma}$, $|y_{\gamma\gamma}|$

NNLOJET+SCET is more precise in the high p_T region

Inclusive cross section for $p_T^{\gamma\gamma} > 350$ GeV is measured to be 0.23 ± 0.14 fb, consistent with SM of 0.21 fb

SCETIib+MCFM8 provides predictions for $Iy_{\gamma\gamma}$ I at NNLO+NNLL' $_{\Phi}$ accuracy

Differential results: N_{jets} , $\Delta \phi_{jj}$

Compared to various predictions

Measured N_{jets} distribution consistent with all predictions with precision better than NLO

 $\Delta \varphi_{jj:}$ sensitive to the CP properties of the Higgs boson

GoSam is more precise, with H+0,1,2,3j@NLO

Combination of $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$

ATLAS-CONF-2019-032

Combination

- The combined cross section is extracted for the total phase space
 - Introduce more model dependence and acceptance uncertainty
 - But significantly reduce measurement uncertainties \rightarrow still limited by data statistics

- Acceptance correction:
 - Extrapolate 4I and $\gamma\gamma$ to the total phase space
 - 4I: overall 49%; 45% at low $p_{T,H}$ to 65% at high $p_{T,H}$
 - $-\gamma\gamma$: overall 50%; 50% at low p_{T,H}, 45% at intermediate values, and about 75% at high p_{T,H}
- Unfolding: bin-by-bin correction factor
 - Only $p_{T,H}$ differential measurement is considered for the moment
 - Migration effect very small for $p_{\text{T},\text{H}}$

Combined total cross section

Combined differential results

The measurement uncertainty is dominated by the statistical component

The two channels are compatible, with *p*-value of 11%

Compatible with SM, with *p*-value of 78%

Interpretations of Higgs differential measurements ($H \rightarrow \gamma \gamma$ only)

ATLAS-CONF-2019-029

EFT interpretation: this talk Charm-quark Yukawa coupling: <u>F. Braren's talk</u>

EFT interpretation

- Probe new physics via an effective field theory approach
- Two EFT frameworks:
 - Higgs Effective Lagrangian in the Strongly Interacting Light Higgs basis (SILH)
 - SMEFT with Warsaw basis

$$C_{\text{eff}}^{\text{SMEFT}} \supset \qquad \overline{C}_{HG}O'_{g} + \overline{C}_{HW}O'_{HW} + \overline{C}_{HB}O'_{HB} + \overline{C}_{HWB}O'_{HWB} + \widetilde{C}_{HG}\widetilde{O}'_{g} + \widetilde{C}_{HW}\widetilde{O}'_{HW} + \widetilde{C}_{HB}\widetilde{O}'_{HB} + \widetilde{C}_{HWB}\widetilde{O}'_{HWB},$$

 $\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^{(6)},$

Modify ggF production Modify VBF/VH production and Hyy decay

Statistical interpretation

Construct a likelihood using 5 unfolded observables to constrain Wilson coefficients

$$-p_{\mathrm{T}}^{\gamma\gamma}, \, \mathsf{N}_{\mathsf{jets}}, \, p_{\mathrm{T}}^{j1}, \, \mathsf{m}_{\mathsf{jj}}, \, \Delta\phi_{\mathsf{jj}} \qquad \qquad \mathcal{L} = \frac{1}{\sqrt{(2\pi)^{k} |C|}} \exp\left(-\frac{1}{2} \left(\vec{\sigma}_{\mathsf{data}} - \vec{\sigma}_{\mathsf{pred}}\right)^{T} C^{-1} \left(\vec{\sigma}_{\mathsf{data}} - \vec{\sigma}_{\mathsf{pred}}\right)\right),$$

- Covariance matrix: $C = C_{stat} + C_{syst} + C_{theo}$
- $-\sigma_{\text{data:}}$ unfolded differential measurements
- $-\sigma_{pred:}$ parton-level events MadGraph5+Pythia8
 - Assumption: higher-order QCD and EW corrections are the same for SM and BSM
 - "K-factors" obtained from SM are applied to BSM

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \sum_{j} \left(\frac{\mathrm{d}\sigma_{j}}{\mathrm{d}X}\right)^{\mathrm{ref}} \cdot \left(\frac{\mathrm{d}\sigma_{j}}{\mathrm{d}X}\right)_{c_{i}}^{\mathrm{MG5}} / \left(\frac{\mathrm{d}\sigma_{j}}{\mathrm{d}X}\right)_{c_{i}=0}^{\mathrm{MG5}},$$

Results

- Results presented for both SILH and SMEFT formulations
 - SILH: both 1D and 2D limits

-	Coefficient	Observed 95% CL limit
	\overline{c}_g	$[-0.26, 0.26] \times 10^{-4}$
SILH	${ ilde c}_g$	$[-1.3, 1.1] \times 10^{-4}$
	\overline{c}_{HW}	$[-2.5, 2.2] \times 10^{-2}$
	\tilde{c}_{HW}	$[-6.5, 6.3] imes 10^{-2}$
	\overline{c}_{γ}	$[-1.1, 1.1] \times 10^{-4}$
_	${ ilde c}_\gamma$	$[-2.8, 4.3] \times 10^{-4}$

About a factor 2 improvement compared to the 36 fb⁻¹ results

- SMEFT: two scenarios
 - Only the interference term considered
 - Interference + quadratic terms

$$\sigma \propto |\mathcal{M}_{\rm EFT}|^2 = |\mathcal{M}_{\rm SM}|^2 + |\mathcal{M}_{\rm d6}|^2 + 2Re(\mathcal{M}_{\rm SM}^*\mathcal{M}_{\rm d6}) ,$$

		•
Coefficient	95% CL, interference-only terms	95% CL, interference and quadratic terms
\overline{C}_{HG}	$[-4.2, 4.8] \times 10^{-4}$	$[-6.1, 4.7] \times 10^{-4}$
\widetilde{C}_{HG}	$[-2.1, 1.6] imes 10^{-2}$	$[-1.5, 1.4] \times 10^{-3}$
\overline{C}_{HW}	$[-8, 2, 7.4] imes 10^{-4}$	$[-8.3, 8.3] \times 10^{-4}$
\widetilde{C}_{HW}	[-0.26, 0.33]	$[-3.7, 3.7] imes 10^{-3}$
\overline{C}_{HB}	$[-2.4, 2.3] \times 10^{-4}$	$[-2.4, 2.4] \times 10^{-4}$
\widetilde{C}_{HB}	[-13.0, 14.0]	$[-1.2, 1.1] \times 10^{-3}$
\overline{C}_{HWB}	$[-4.0, 4.4] \times 10^{-4}$	$[-4.2, 4.2] \times 10^{-4}$
\widetilde{C}_{HWB}	[-11.1, 6.5]	$[-2.0, 2.0] \times 10^{-3}$

Summary

- Latest results on Higgs fiducial and differential measurements with full run 2 data:
 - − H→ZZ^{*}→4I and H→ $\gamma\gamma$ channels, and the combination
 - Results improved: increased luminosity, improved analysis techniques
 - Fiducial cross section in $H \rightarrow \gamma \gamma$ becomes systematically limited
 - Differential measurements still statistically limited
 - Measurements are all consistent with SM predictions
- Interpretations in the context of Effective Field Theory:
 - Using 5 differential observables in H $\rightarrow \gamma\gamma$ to probe the tensor structure of the Higgs boson interactions
 - Improved limits with SILH basis (a factor of two)
 - First limits on the SMEFT basis
- More results are coming:
 - Other channels, more differential observables, interpretations etc.

Backup

Fiducial phase space: $H \rightarrow ZZ^* \rightarrow 4I$

Leptons and jets					
Leptons	$p_{\rm T} > 5 { m ~GeV}, \eta < 2.7$				
Jets	$p_{\rm T} > 30 { m ~GeV}, y < 4.4$				
remove jets with	$\Delta R(ext{jet}, \ell) < 0.1$				
Lept	ton selection and pairing				
Lepton kinematics	$p_{\rm T} > 20, 15, 10~{\rm GeV}$				
Leading pair (m_{12})	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $				
Subleading pair (m_{34})	remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $				
Event selection (at most one quadruplet per event)					
Mass requirements	50 GeV< $m_{12} < 106~{\rm GeV}~$ and 12 GeV $< m_{34} < 115~{\rm GeV}$				
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$				
J/ψ veto	$m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOS lepton pairs				
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$				
If extra leptons with $p_{\rm T}>12~{\rm GeV}$	Quadruplet with the largest ME				

Response matrix method

Response matrix unfolding

Correlation matrix

Response matrix vs bin-by-bin correction

• Unfolded p_{T}^{4l}

Response matrix vs bin-by-bin correction

Unfolded N_{jets}

Systematic uncertainties: 41

Experimental uncertainties [%]			Theory uncertainties [%]							
Measurement	Lum.	$e,\mu,$	Jets, flavour	Reducible	ZZ^*	tXX			Signal	
		pile-up	tagging	backgr.	backgr	backgr.	PDF	QCD scale	Parton Shower	Composition
				Fidu	cial cross	section				
$\sigma_{ m comb}$	1.7	2.5	—	< 0.5	1	< 0.5	< 0.5	2	1	< 0.5
Per decay final state fiducial cross sections										
4μ	1.7	2.5	_	0.5	1	< 0.5	< 0.5	2	1	< 0.5
4e	1.7	7	—	0.5	1.5	< 0.5	< 0.5	2	0.5	< 0.5
$2\mu 2e$	1.7	5.5	—	0.5	1	< 0.5	< 0.5	2	1.5	< 0.5
$2e2\mu$	1.7	2.0	_	0.5	1	< 0.5	< 0.5	2	1	< 0.5
Stage-0 production bin cross sections										
ggF	1.7	1.5	1	0.5	1.5	< 0.5	0.5	1	2	—
VBF	1.7	1	4.5	0.5	2	0.5	1.5	8	6	—
VH	1.8	1.5	3.5	1	5	0.5	2	12	8	—
ttH	1.7	1	4.5	1	1	0.5	0.5	8	4	_

Fiducial phase space: $H \rightarrow \gamma \gamma$

Objects	Fiducial definition
Photons	$ \eta < 2.37 \text{ (excluding } 1.37 < \eta < 1.52), \sum p_{\mathrm{T}}^{i}/p_{\mathrm{T}}^{\gamma} < 0.05$
Jets	anti- $k_t, R = 0.4, p_T > 30 \text{ GeV}, y < 4.4$
Diphoton	$N_{\gamma} \ge 2, \ 105 GeV < m_{\gamma\gamma} < 160 GeV, \ p_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 0.35, \ p_{\rm T}^{\gamma_2}/m_{\gamma\gamma} > 0.25$

Δφ_{ii} :

calculated from the two leading jets in the event as the difference in azimuthal angle between the more forward jet minus that of the more central one.

Systematic uncertainties: $H \rightarrow \gamma \gamma$

Source	Uncertainty (%)
Statistics	6.9
Signal extraction syst.	7.9
Photon energy scale & resolution	4.6
Background modelling (spurious signal)	6.4
Correction factor	2.6
Pile-up modelling	2.0
Photon identification efficiency	1.2
Photon isolation efficiency	1.1
Trigger efficiency	0.5
Theoretical modelling	0.5
Photon energy scale & resolution	0.1
Luminosity	1.7
Total	11.0

Unfolding uncertainties: $H \rightarrow \gamma \gamma$

Statistical and systematic uncertainties relative to the differential cross sections measured in data, sequentially summed in quadrature, in each bin of the $p_T^{\gamma\gamma}$

The systematic uncertainties of the unfolding correction factors, sequentially summed in quadrature, in each bin of the $p_T^{\gamma\gamma}$

Differential results: $p_{\rm T}^{j1}$, m_{jj}

 $p_{\rm T}^{j_1}$: probes the perturbative QCD prediction, sensitive to the relative contributions of the different Higgs production mechanisms.

Higher m_{jj} bin sensitive to VBF production

GoSam is more precise, with H+0,1,2,3j@NLO

Theory predictions

- NNLOJET:
 - fixed-order NNLO prediction in QCD for inclusive H + 1-jet production.
- NNLOJET+SCET:
 - with N³LL resummation matched to an NNLO fixed-order calculation in the heavy top-quark mass limit
- JVE+N³LO:
 - includes NNLL resummation in QCD of the p_T of the leading jet which is matched to the N³LO total cross section, shown only for the inclusive one-jet cross section.
- STWZ-BLPTW:
 - include NNLL0+NNLO resummation for the $p_{\rm T}$ of the leading jet in QCD, combined with a NLL0+NLO resummation in QCD for the subleading jet
- GoSam:
 - provides the fixed-order loop contributions accurate at NLO in QCD in the inclusive H + zero-jet, H + one-jet, H + two-jet, and H + three-jet regions. The real-emission contributions at fixed order in QCD are provided by Sherpa
- Sherpa (MEPS@NLO):
 - accurate to NLO in QCD in the inclusive H + zero-jet, H + one-jet, H + two-jet, and H + three-jet regions and includes top-quark mass effects
- SCETlib(STWZ):
 - provides predictions for $p_{\rm T}^{j1}$ at NNLL'+NNLO₀ accuracy by applying a resummation in $p_{\rm T}^{j1}$.

EFT

Charm Yukawa coupling

- Higgs to c-quark coupling is less constrained
 - − VH(→cc) search, ATLAS (<u>PRL120(2018)211802</u>) : σ/σ_{SM} obs (exp): 110(150⁺⁸⁰₋₄₀)
 - CMS (<u>CMS-PAS-HIG-18-031</u>): 70 (37⁺¹⁶₋₁₀)
- Anomalous y_c couplings could modify Higgs $p_{\rm T}$
 - Only the shape of the measured $p_{\rm T}^{\gamma\gamma}$ spectrum is used, more model-independent

22222

22222

C

Н

Н

g

g