Status of gluon-fusion

Higgs Production

Elisabetta Furlan ETH Zürich

Higgs@LHC: where we are...

- LHC so far collected about 150 fb⁻¹ of data \rightarrow only 5% of the full expected dataset (3 ab⁻¹)!
 - \Rightarrow great opportunities for

. . .

- ▶ precision measures of the Higgs couplings (O(few %)) → crucial to test the Higgs mechanism
- detection of New Physics via rare decays
 exploration of the Higgs potential (through double Higgs production)

Higgs@LHC: where we are...

- LHC so far collected about 150 fb⁻¹ of data \rightarrow only 5% of the full expected dataset (3 ab⁻¹)!
 - → great opportunities for
 - ▶ precision measures of the Higgs couplings (O(few %)) → crucial to test the Higgs mechanism
 - detection of New Physics via rare decays
 exploration of the Higgs potential (through double Higgs production)

Prod. mode	Analysis	$\Delta \mu_{ m sig}$
	Run 2, 80 fb ⁻¹	$+0.070 \\ -0.052$
ggF	HL-LHC S1	$^{+0.062}_{-0.056}$
	HL-LHC S2	$^{+0.030}_{-0.028}$
	Run 2, 80 fb ⁻¹	+0.161 -0.101
VBF	HL-LHC S1	$^{+0.087}_{-0.072}$
	HL-LHC S2	$+0.053 \\ -0.050$
	Run 2, 80 fb ⁻¹	+0.283 -0.144
VH	HL-LHC S1	+0.124 -0.084
	HL-LHC S2	$+0.077 \\ -0.062$
	Run 2, 80fb^{-1}	
tīH	HL-LHC S1	$+0.156 \\ -0.095$
	HL-LHC S2	+0.074 -0.051

=

ATL-PHYS-PUB-2018-054

CMS PAS FTR-18-011

Prod. mode	Analysis	$\Delta \mu_{\rm sig}$
	Run 2, 80 fb ⁻¹	+0.070 -0.052
ggF	HL-LHC S1	$^{+0.062}_{-0.056}$
	HL-LHC S2	$^{+0.030}_{-0.028}$
	Run 2, 80 fb ⁻¹	+0.161 -0.101
VBF	HL-LHC S1	$^{+0.087}_{-0.072}$
	HL-LHC S2	$+0.053 \\ -0.050$
	Run 2, 80 fb ⁻¹	+0.283 -0.144
VH	HL-LHC S1	+0.124 -0.084
	HL-LHC S2	$+0.077 \\ -0.062$
	Run 2, 80 fb ⁻¹	
tŦH	HL-LHC S1	$+0.156 \\ -0.095$
	HL-LHC S2	+0.074 -0.051

CMS PAS FTR-18-011

Scenario 2: theory error halved w.r.t. its current value (S1)

CERN-LPCC-2018-04

➡ It is vital to reduce significantly (by at least 50%) the theoretical uncertainty, or it will become the main limiting factor in the interpretation of an important part of the HL – LHC data

• on the branching ratios: well under control

decay channel	branching ratio	relative eror
$H \to \gamma \gamma$	2.27 x 10 ⁻³	+1.73% -1.72%
$H \to ZZ$	2.64 x 10 ⁻²	+0.99% -0.99%
$H \to W^+ W^-$	2.15 x 10 ⁻¹	+0.99% -0.99%
$H \to \tau^+ \tau^-$	6.26 x 10 ⁻²	+1.17% -1.16%
$H \to b\overline{b}$	5.81 x 10 ⁻¹	+0.65% -0.65%
$H \to Z\gamma$	1.54 x 10 ⁻³	+5.71% -5.71%
$H \to \mu^+ \mu^-$	2.17 x 10-4	+1.23% -1.23%

LHCHXSWG, for the CERN Yellow report 4

• on the production mode

$\sqrt{s} = 13 \text{ TeV}$	σ [pb]	$\delta\sigma^{theo}/\sigma$
ggH	48.5	+4.6% -6.7%
VBF	3.78	+0.4% -0.3%
WH	1.37	+0.5% -0.7%
•	•	•

LHCHXSWG, for the CERN Yellow report 4

gluon-fusion Higgs production is the main limiting factor!

gluon-fusion Higgs production is the main limiting factor!

• basic process (leading order in QCD)

 \Rightarrow currently known at N³LO in QCD

• astonishing result, as it requires the evaluation of hundreds of thousands of multi-loop, multiscale diagrams!

Anastasiou, Duhr, Dulat, EF, Gehrmann, Herzog, Lazopoulos, Mistlberger, JHEP 05 (2016) 058

Mistlberger, JHEP 05 (2018) 028

Baikov et al., Phys. Rev. Lett. 102, 212002 (2009); Gehrmann et al., JHEP 1006, 094 (2010)

Gehrmann et al., JHEP 1201, 056 (2012); Duhr et al., Phys. Lett. B 727, 452 (2013); Li et al., JHEP 1311, 080 (2013)

Anastasiou et al., JHEP 1312, 088 (2013); Kilgore, Phys. Rev. D 89 073008 (2014)

Anastasiou et al., JHEP 1307, 003 (2013)

 \Rightarrow currently known at N³LO in QCD

• astonishing result, as it requires the evaluation of hundreds of thousands of multi-loop, multiscale diagrams!

Anastasiou, Duhr, Dulat, EF, Gehrmann, Herzog, Lazopoulos, Mistlberger, JHEP 05 (2016) 058

Mistlberger, JHEP 05 (2018) 028

Baikov et al., Phys. Rev. Lett. 102, 212002 (2009); Gehrmann et al., JHEP 1006, 094 (2010)

Gehrmann et al., JHEP 1201, 056 (2012); Duhr et al., Phys. Lett. B 727, 452 (2013); Li et al., JHEP 1311, 080 (2013)

Anastasiou et al., JHEP 1312, 088 (2013); Kilcore, Phys. Rev. D 89 073008 (2014)

~	sh	-
2	5	5
		2000 1000 1000
10 00 0	000000	000000

Anastasiou et al., JHEP 1307, 003 (2013)

heavy-quark effective theory (HQET): $m_t \to \infty$

Gluon-fusion Higgs production currently known at N³LO in QCD (in HQET) with

exact finite-mass effects of top, bottom and charm through NLO

 \Rightarrow currently known at N³LO in QCD (in HQET)

with

- exact finite-mass effects of top, bottom and charm through NLO
 Graudenz et al., PRL 70, 1372 (1993); Spira et al., NP B 453, 17 (1995)
- → 1/mt² series corrections around the infinte-mass approximation at NNLO
 Harlander and Ozeren, JHEP 0911, 088 (2009); Pak et al., JHEP 1002, 025 (2010)
- → two loop electroweak corrections

3009); Pak et al., JHEP 1002, 025 (2010)

Aglietti, et al., PLB 595 (2004) 432-441; Actis et al., PLB 670 (2008) 12-17

 \rightarrow currently known at N³LO in QCD (in HQET)

with

- exact finite-mass effects of top, bottom and charm through NLO
 Graudenz et al., PRL 70, 1372 (1993); Spira et al., NP B 453, 17 (1995)
- → 1/mt² series corrections around the infinte-mass approximation at NNLO
 Harlander and Ozeren, JHEP 0911, 088 (2009); Pak et al., JHEP 1002, 025 (2010)
- → two loop electroweak corrections

Aglietti, et al., PLB 595 (2004) 432-441; Actis et al., PLB 670 (2008) 12-17

three loop QCD - electroweak corrections (heavy gauge-boson limit)
Anastasiou et al., JHEP 04 (2009) 003

• breakdown of the cross section

$48.58 \mathrm{pb} = 16.00 \mathrm{pb}$		(LO, rEFT)
$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
+ 9.56 pb	(+19.7%)	(NNLO, rEFT)
$+ 0.34 \mathrm{pb}$	(+0.2%)	$(NNLO, 1/m_t)$
$+ 2.40 \mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
+ 1.49 pb	(+3.1%)	$(N^{3}LO, rEFT)$

Anastasiou, Duhr, Dulat, EF, Gehrmann, Herzog, Lazopoulos, Mistlberger, JHEP 05 (2016) 058

• breakdown of the theory error

σ	$\delta(\mathrm{PDF})$	$\delta(\alpha_s)$	$\delta(\text{scale})$	$\delta(ext{trunc})$	$\delta(extsf{pdf-th})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	
48.58	± 0.90	+1.27 -1.25	+0.10 -1.15	± 0.18	± 0.56	± 0.49	± 0.40	± 0.49	pb
	\pm 1.86	+2.61 -2.58	+0.21 -2.37	±0.37	\pm 1.16	± 1	± 0.83	± 1	%

Anastasiou, Duhr, Dulat, EF, Gehrmann, Herzog, Lazopoulos, Mistlberger, JHEP 05 (2016) 058

 $\sigma = 48.58 \,\mathrm{pb}_{-3.27 \,\mathrm{pb} \,(-6.72\%)}^{+2.22 \,\mathrm{pb} \,(+4.56\%)} (\mathrm{theory}) \pm 1.56 \,\mathrm{pb} \,(3.20\%) (\mathrm{PDF} + \alpha_s)$

• room for improvement!

σ	$\delta(\mathrm{PDF})$	$\delta(lpha_s)$	$\delta(\text{scale})$	$\delta(ext{trunc})$	$\delta(extsf{pdf-th})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	
48.58	± 0.90	+1.27 -1.25	+0.10 -1.15	± 0.18	± 0.56	± 0.49	± 0.40	± 0.49	pb
	\pm 1.86	+2.61 -2.58	+0.21 -2.37	±0.37	\pm 1.16	± 1	± 0.83	± 1	%

Anastasiou, Duhr, Dulat, EF, Gehrmann, Herzog, Lazopoulos, Mistlberger, JHEP 05 (2016) 058

if we manage to get under control these calculations, we achieve our aim of halving the theory error on ggH!

• room for improvement!

σ	$\delta(\mathrm{PDF})$	$\delta(lpha_s)$	$\delta(\text{scale})$	$\delta(ext{trunc})$	$\delta(extsf{pdf-th})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	
48.58	± 0.90	+1.27 -1.25	+0.10 -1.15	± 0.18	± 0.56	± 0.49	± 0.40	± 0.49	pb
	\pm 1.86	+2.61 -2.58	+0.21 -2.37	±0.37	\pm 1.16	± 1	± 0.83	± 1	%

Mistlberger, JHEP 05 (2018) 028

• room for improvement!

σ	$\delta(\mathrm{PDF})$	$\delta(\alpha_s)$	$\delta(\text{scale})$	$\delta(ext{trunc})$	$\delta(extsf{pdf-th})$	$\delta(\text{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	
48.58	±0.90	+1.27 -1.25	+0.10 -1.15	± 0.18	± 0.56	± 0.49	± 0.40	± 0.49	pb
	\pm 1.86	+2.61 -2.58	+0.21 -2.37	±0.37	\pm 1.16	± 1	±0.83	± 1	%

- work in progress
 - exact three-loop amplitude Bonetti, Melnikov, Tancredi, PRD 97 (2018) 056017
 - ▶ full cross section in the opposite regime of massless gauge bosons → results in the two limits within 0.6% of each other!

Anastasiou, del Duca, EF, Mistlberger, Moriello, Schweizter, Specchia, JHEP 03 (2019) 162

• room for improvement!

σ	$\delta(\mathrm{PDF})$	$\delta(lpha_s)$	$\delta(\text{scale})$	$\delta(ext{trunc})$	$\delta(extsf{pdf-th})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	
48.58	± 0.90	+1.27 -1.25	+0.10 -1.15	± 0.18	± 0.56	± 0.49	± 0.40	± 0.49	pb
	\pm 1.86	+2.61 -2.58	+0.21 -2.37	±0.37	\pm 1.16	± 1	± 0.83	± 1	%

• available: study of the contribution from light quarks at NNLO Caola, Lindert, Melnikov, Monni,

Caola, Lindert, Melnikov, Monni, Tancredi, Wever, JHEP 09 (2018) 35

• room for improvement!

σ	$\delta(\mathrm{PDF})$	$\delta(lpha_s)$	$\delta(\text{scale})$	$\delta(ext{trunc})$	$\delta(extsf{pdf-th})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	
48.58	± 0.90	+1.27 -1.25	+0.10 -1.15	± 0.18	± 0.56	± 0.49	± 0.40	± 0.49	pb
	\pm 1.86	+2.61 -2.58	+0.21 -2.37	±0.37	\pm 1.16	± 1	±0.83	± 1	%

• same calculation:

+ other 500 diagrams
+ radiation
→ new classes of multiloop integrals that depend on

multiple mass scales

Outlook

- The calculation of the gluon-fusion Higgs production cross section at N³LO is a milestone result
 - phenomenological impact
 - completely new classes of integrals
- still room for improvement
 - ⇒ an additional reduction of the theory error by 50% ("S2") is achievable
 - break through the barrier of three—loop calculations with full mass dependance!

Stay tuned, lots of new developments

coming up!

Finite mass effects

(top quark)

How good is the heavy-top approximation?
at LO

Finite mass effects

(top quark)

• at NLO, "improve" the EFT result by rescaling it with the exact LO cross section:

σ_{EFT}^{NLO}	=	34.66 pb		0.65%	
σ_{ex}^{NLO}	=	36.60 pb			
$\sigma^{NLO}_{EFT,r}$	=	$R_{LO} imes \sigma_E^N$	$S_{FT}^{LO} = 36$	5.84 pb	
$R_{LO} =$	$\frac{\sigma_{exc}^{LC}}{LC}$	$\frac{n_{o}}{2} \simeq 1.06$		\sqrt{S} mh	13TeV 125GeV
	σ_{EF}^{LC}	$\tilde{T}T$		$\begin{array}{c} \operatorname{PDF} \\ a_s(m_Z) \\ m_t(m_t) \end{array}$	PDF4LHC15_nnlo_100 0.118 $162.7 (\overline{MS})$
				$m_{1}(4.18GeV)$	$4.18 (\overline{MS})$

 $m_c(3GeV) = 0.986 \ (\overline{MS})$ $\mu = \mu_B = \mu_F = 62.5 \ (= m_h/2)$

Finite mass effects

(top quark)

- rescale NNLO and N³LO cross sections, computed in the EFT, by R_{LO}
- at NNLO, include known m_H/m_t corrections

 $\begin{array}{l} gg \sim +0.8\% \\ qg \sim -0.1\% \end{array}$

Harlander, Ozeren; Pak, Rogal, Steinhauser; Mantler, Marzani

▶ tiny effect → confirms the validity of the rescaled EFT

the error due to unknown top-mass effects at NNLO is estimated as

 $\delta(1/m_t) \sim \pm 1\%$

Harlander, Ozeren; Pak, Rogal, Steinhauser; Mantler, Marzani

Full NLO mass effects

(top, bottom, charm quark)

- The full dependance of the Higgs production cross section on the quark mass is known exactly through NLO
 Spira, Djouadi, Graudenz, Zerwas ; Harlander, Kant; Aglietti, Bonciani, Degrassi, Vicini.
 - include it for top, bottom and charm quarks

 $\left| \begin{array}{c} \delta \sigma_{EFT+\frac{1}{m_t}}^{NNLO} \simeq \pm 0.31 \, \mathrm{pb} \\ (\pm 0.6\%) \end{array} \right|$

estimate the error from unknown light-quark
 effects at NNLO as

$$\delta(tbc) = \pm \left| \frac{\delta \sigma_{ex;t}^{NLO} - \delta \sigma_{ex;t+b+}^{NLO}}{\delta \sigma_{ex;t}^{NLO}} \right|$$

NLO QCD-EW corrections

• contributions:

Bonetti, Melnikov, Tancredi, PRD 97 (2018) 056017 Anastasiou, Del Duca, EF, Mistleberger, Moriello, Schweitzer, Specchia, in preparation

σ	$\delta(ext{scale})$	$\mathcal{O}(PDF\text{-}TH)$	$\delta(\text{trunc})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	$\delta\sigma^{tot}$	
48.58	+0.10 -1.15	± 0.56	± 0.18	±0.49	± 0.40	±0.49	+2.22 -3.27	pb
	+0.21 -2.37	\pm 1.16	± 0.37	± 1	± 0.83	± 1	+4.56 -6.72	%

• estimate of unknown higher order corrections, obtained by varying the factorisation and renormalisation scales around the central value ($m_{\rm H}/2$) by a factor of 2

	And a second second second							
σ	$\delta(\text{scale})$	$\delta(t{pdf-th})$	$\delta(\mathrm{trunc})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	$\delta\sigma^{tot}$	
48.58	+0.10 -1.15	± 0.56	± 0.18	±0.49	± 0.40	±0.49	+2.22 -3.27	pb
	+0.21 -2.37	\pm 1.16	± 0.37	± 1	± 0.83	\pm 1	+4.56 -6.72	%

- error introduced computing the N³LO cross section using NNLO PDFs
- estimated from the analogous relative error one obtains at NNLO using NLO instead of NNLO PDFs

σ	$\delta(\text{scale})$	$\delta(ext{pdf-te})$	$\delta(ext{trunc})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	$\delta \sigma^{tot}$	
48.58	+0.10 -1.15	± 0.56	± 0.18	±0.49	± 0.40	±0.49	+2.22 -3.27	pb
	+0.21 -2.37	\pm 1.16	± 0.37	± 1	± 0.83	± 1	+4.56 -6.72	%

- the 2016 result was computed as an expansion around the threshold production of an Higgs boson, with additional radiation being soft
- a finite number of terms (37) was kept in this expansion, and an estimate on the convergence of the series was derived

σ	$\delta(ext{scale})$	$\delta(ext{pdf-te})$	$\delta(ext{trunc})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	$\delta\sigma^{tot}$	
48.58	+0.10 -1.15	± 0.56	± 0.18	± 0.49	± 0.40	±0.49	+2.22 -3.27	pb
	+0.21 -2.37	\pm 1.16	± 0.37	± 1	± 0.83	± 1	+4.56 -6.72	%

• the new prediction

 $\sigma = 48.68 \, \text{pb}_{-3.16 \, \text{pb}}^{+2.07 \, \text{pb}}$

does not rely on the threshold approximation

- it is consistent with the previous result
- it eliminates the "truncation error"

A CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTION OF	And the state and the state states	and the second			and the second			
σ	$\delta(\text{scale})$	$\delta(ext{pdf-th})$	$\delta(ext{trunc})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\left \delta(1/m_t) \right $	σ^{tot}	
48.58	+0.10 -1.15	± 0.56	± 0.18	±0.49	± 0.40	±0.49	+2.22 -3.27	pb
	+0.21 -2.37	\pm 1.16	± 0.37	± 1	± 0.83	\pm 1	+4.56 -6.72	%

• both due to the unknown exact-mass effects at NNLO

σ	$\delta(\text{scale})$	$\delta(ext{pdf-th})$	$\delta(ext{trunc})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	$\delta\sigma^{tot}$	
48.58	+0.10 -1.15	± 0.56	± 0.18	±0.49	± 0.40	±0.49	+2.22 -3.27	pb
	+0.21 -2.37	\pm 1.16	± 0.37	± 1	±0.83	\pm 1	+4.56 -6.72	%

 for the top quark, leading finite-mass corrections compute as a 1/mt expansion

> Harlander and Ozeren, JHEP 0911, 088 (2009); Pak et al., JHEP 1002, 025 (2010)

σ	$\delta(ext{scale})$	$\delta(ext{pdf-th})$	$\delta(ext{trunc})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$(1/m_t)$	$\delta\sigma^{tot}$	
48.58	+0.10 -1.15	± 0.56	± 0.18	±0.49	± 0.40	±0.49	+2.22 -3.27	pb
	+0.21 -2.37	\pm 1.16	± 0.37	± 1	± 0.83	± 1	+4.56 -6.72	%

• also light quarks, in particular the bottom, are important at this level of accuracy, due to the interference with the LO top loop

	and the second second	and the second			1 - Carlos and a construction of the construct			
σ	$\delta(\text{scale})$	$\delta(ext{pdf-th})$	$\delta(\text{trunc})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\left (1/m_t) \right $	$\delta\sigma^{tot}$	
48.58	+0.10 -1.15	± 0.56	± 0.18	±0.49	± 0.40	±0.49	+2.22 -3.27	pb
	+0.21 -2.37	\pm 1.16	± 0.37	± 1	± 0.83	\pm 1	+4.56 -6.72	%

• also light quarks, in particular the bottom, are important at this level of accuracy, due to the interference with the LO top loop

 $\delta \sigma_{(t,b,c)}^{NLO} = -2.05 \text{ pb}(-4.2\%)$