

Prospects of multi-Higgs production in the 2HDM at the LHC

Shoaib Munir ICTP - EAIFR, Kigali

Higgs Hunting 2019, Orsay/Paris July 29, 2019

- □ New Higgs bosons at the LHC
- □ The 2-Higgs-doublet model
- Type-I 2HDM: Electroweak pair-production of Higgs bosons
- Beyond di-Higgs production
- Conclusions

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures of new physics at the LHC

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs

Could be the earliest signatures 10² of new physics at the LHC 10 But 1

• Masses (100) GeV:

Small production cross section

- improve statistics

[A. Djouadi, hep-ph/0503173]

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures **CMS** Preliminary $\alpha(pp \rightarrow X \rightarrow ZZ) [pb]$ of new physics at the LHC Expected ± 1 ----- Expected ± 2σ Γ= 10 GeV Observed But ······ Expected 4I ······ Expected 2l2q ----- Expected 2l2v

• Masses O(100) GeV:

Small production cross section

- improve statistics

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs

Could be the earliest signatures of new physics at the LHC But

• Masses (100) GeV:

Small production cross section

- improve statistics
- Masses (10) GeV:

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs

Could be the earliest signatures of new physics at the LHC But

• Masses (100) GeV:

Small production cross section

- improve statistics
- Masses (10) GeV:

Large SM Backgrounds - improve search strategies

Also (in either case)

decay rates to SM particles may be suppressed

Exploit Higgs-Higgs and Higgs-gauge production!

The 2-Higgs-doublet model

$$\begin{split} \mathcal{V}_{2\text{HDM}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} . \end{split}$$
After EW symmetry breaking:
$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \left(G^+ \cos \beta - H^+ \sin \beta \right) \\ v_1 - h \sin \alpha + H \cos \alpha + i \left(G \cos \beta - A \sin \beta \right) \end{pmatrix} \begin{pmatrix} \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \left(G^+ \sin \beta + H^+ \cos \beta \right) \\ v_2 + h \cos \alpha + H \sin \alpha + i \left(G \sin \beta + A \cos \beta \right) \end{pmatrix} \end{pmatrix}$$

(a: mixing angle of neutral scalars, $tan\beta = v_2/v_1$)

> Three neutral Higgs bosons (h, H, A), a H^{\pm} pair > λ_{1-5} (CP-conserving limit: $\lambda_{6,7=0}$) can be traded for Higgs boson masses using tadpole conditions

Minimal Flavour Violation

 $-\mathcal{L}_Y = \overline{Q}_L \widetilde{\Phi}_1 \eta_1^U U_R + \overline{Q}_L \Phi_1 \eta_1^D D_R + \overline{Q}_L \Phi_1 \eta_1^L L_R + \overline{Q}_L \widetilde{\Phi}_2 \eta_2^U U_R + \overline{Q}_L \Phi_2 \eta_2^D D_R + \overline{Q}_L \Phi_2 \eta_2^L L_R$

$$M^F = \frac{v}{\sqrt{2}} \left(\eta_1^F \cos\beta + \eta_2^F \sin\beta \right)$$

To prevent flavour-changing neutral currents, a

 Z_2 symmetry can be imposed

 $_{\circ}$ Z₂-charge assignments \implies four Types of 2HDM

Model	u_R^i	d_R^i	e_R^i	
Type I	Φ_2	Φ_2	Φ_2	
Type II	Φ_2	Φ_1	Φ_1	
Lepton-specific	Φ_2	Φ_2	Φ_1	
Flipped	Φ_2	Φ_1	Φ_2	

Minimal Flavour Violation

 Φ_2

$$-\mathcal{L}_{Y} = \sum_{\substack{f=u,d,\ell}} \frac{m_{f}}{v} \left(\xi_{h}^{f} \overline{f} fh + \xi_{H}^{f} \overline{f} fH - i\xi_{A}^{f} \overline{f} \gamma_{5} fA \right)$$

$$- \left\{ \frac{\sqrt{2}V_{ud}}{v} \overline{u} \left(m_{u} \xi_{A}^{u} \mathbf{P}_{L} + m_{d} \xi_{A}^{d} \mathbf{P}_{R} \right) dH^{+} \left(\begin{array}{c} \xi_{f}^{h} = \cos \alpha / \sin \beta \\ \overline{\xi_{f}^{H}} = \sin \alpha / \sin \beta \\ \end{array} \right)$$

$$+ \frac{\sqrt{2}m_{\ell} \xi_{A}^{\ell}}{v} \overline{v_{L}} \ell_{R} H^{+} + \text{h.c.} \right\}$$

$$\cos \alpha = \sin \beta \sin(\beta - \alpha) + \cos \beta \cos(\beta - \alpha)$$

$$\frac{\text{Model}}{v} \left(\begin{array}{c} u_{R}^{i} & u_{R}^{i} \\ \overline{y} & \overline{y} \\ \overline{y} & \overline{y} \\ \end{array} \right)$$

$$\frac{Model}{v} \left(\begin{array}{c} u_{R}^{i} & u_{R}^{i} \\ \overline{y} \\ \overline$$

 Φ_1

 Φ_2

Type-I 2HDM: Numerical Analysis

Numerically scan the parameter space $m_H = 150 - 750 \,\text{GeV}; \ m_A = 50 - 750 \,\text{GeV}; \ m_{H^{\pm}} = 50 - 750 \,\text{GeV}$ $\sin(\beta - \alpha) = -1 - 1; \ m_{12}^2 = 0 - m_A^2 \sin\beta\cos\beta; \ \tan\beta = 2 - 25$

using the 2HDMC code [D. Eriksson, J. Rathsman, O. Stal, 0902.0851], requiring consistency of each point with

- ✓ Unitarity, perturbativity and vacuum stability
- ✓ Measurements of oblique parameters S, T and U
- ✓ Constraints from

flavour physics

Type-I 2HDM: Numerical Analysis

[A. Arbey, F. Mahmoudi, O. Stal, T. Stefaniak, [1706.07414]

- HFLAV Coll., 1612.07233] $\begin{array}{rcl} 3.17 \leq & \mathrm{BR}(B \to X_s \gamma) \times 10^4 & \leq 3.47 \\ 0.87 \leq & \mathrm{BR}(B_u \to \tau \nu_\tau) \times 10^4 & \leq 1.25 \end{array}$
 - LHCb Coll., 1703.05747] $2.15 \le BR(B_s \to \mu^+ \mu^-) \times 10^9 \le 3.85$

Type-I 2HDM: Numerical Analysis

Numerically scan the parameter space $m_H = 150 - 750 \text{ GeV}; m_A = 50 - 750 \text{ GeV}; m_{H^{\pm}} = 50 - 750 \text{ GeV}$ $\sin(\beta - \alpha) = -1 - 1; m_{12}^2 = 0 - m_A^2 \sin\beta\cos\beta; \tan\beta = 2 - 25$

Using the 2HDMC code [D. Eriksson, J. Rathsman, O. Stal, 0902.0851], requiring consistency of each point with

- ✓ Unitarity, perturbativity and vacuum stability
- \checkmark Measurements of oblique parameters S, T and U
- ✓ Constraints from

flavour physics

- \checkmark Measured h_{125} signal strengths (using HiggsSignals)
- ✓ Limits from LHC searches for additional Higgs bosons (using HiggsBounds)

The $H = h_{125}$ scenario: hA production

The $H = h_{125}$ scenario: hH^{\pm} production

The $h = h_{125}$ scenario

1.Can the EW production of some neutral di-Higgs states dominate their QCD production?

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.08623]

Cross sections calculated with MadGraph5 aMC@NLO

The $h = h_{125}$ scenario

Reconstructing the 2HDM Lagrangian

3.Which Higgs-Higgs and Higgs-gauge couplings of 2HDM-I can be probed in various di-Higgs states?

Coupling	1.hh	2.HH	3.AA	4. H^+H^-	5.hH	6. hA	7. hH^{\pm}	8. HA	9. HH^{\pm}	10. AH^{\pm}
a. λ_{hhh}	\checkmark									
b. λ_{hhH}	\checkmark				\checkmark					
c. λ_{hHH}		\checkmark			\checkmark					
d. λ_{hAA}			\checkmark			\checkmark				
e. $\lambda_{hH^+H^-}$				\checkmark			\checkmark			
f. λ_{HHH}		\checkmark								
g. λ_{HAA}			\checkmark					\checkmark		
h. $\lambda_{HH^+H^-}$				\checkmark					\checkmark	
i. λ_{hAZ}						\checkmark				
j. λ_{HAZ}								\checkmark		
k. $\lambda_{H^+H^-Z}$				\checkmark						
l. $\lambda_{hH^+W^-}$							\checkmark			
m. $\lambda_{HH^+W^-}$									\checkmark	
n. $\lambda_{AH^+W^-}$										\checkmark

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.01147]

> Allow di-Higgs or Higgs-gauge decays of one of the two Higgs bosons

Beyond pair-production

> Allow di-Higgs or Higgs-gauge decays of one of the two Higgs bosons

> Calculate QCD and/or EW production cross sections (in the narrow-width approximation) as

 $\sigma(gg/qq^{(\prime)} \rightarrow h_i h_j) \ X \ BR(h_{i/j} \rightarrow h_k h_1/h_k V)$

Neutral 3-body states

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.08623]

Charged 3-body States

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.08623]

Couplings at the LHC

(Enhanced) Access compared to the di-Higgs states?

Coupling	1.hh	2.HH	3.AA	$4, H^+H^-$	5. hH	6. hA	$7. hH^{\pm}$	8. HA	9. HH^{\pm}	10. AH^{\pm}
a. λ_{hhh}	$(hhh)^*$				$(hhH)^*$	$(hhA)^*$	$(hhH^{\pm})^*$			
b. λ_{hhH}		hhH			hhh			hhA	hhH^{\pm}	
c. λ_{hHH}		$(hHH)^*$			$(hhH)^*$ hH^+H^-			$(hHA)^*$	$(hHH^{\pm})^{*}$	
d. λ_{hAA}	(hAA)		$(hAA)^*$	$(hH^+H^-)^*$	HAA	(hhA)* AAA	$(AAH^{\pm})^*$	$(hHA)^*$		
e. $\lambda_{hH^+H^-}$	hH^+H^-			$(hH^+H^-)^*$	HH+H-	AH ⁺ H ⁻	$(hhH^{\pm})^{*}$ $H^{+}H^{-}H^{\pm}$		$(hHH^{\pm})^{*}$	$(hAH^{\pm})^*$
f. λ_{HHH}		$(HHH)^*$			$(hHH)^*$			$(HHA)^*$	$(HHH^{\pm})^*$	
g. λ_{HAA}		HAA	$(HAA)^*$		hAA	$(hHA)^*$		$\frac{(HHA)^*}{[AAA]}$		HAH^{\pm}
h. $\lambda_{HH^+H^-}$		HH ⁺ H ⁻		$(HH^+H^-)^*$			$(hHH^{\pm})^*$	AH ⁺ H ⁻	$(HHH^{\pm})^*$ $H^+H^-H^{\pm}$	$(HAH^{\pm})^*$
i. λ_{hAZ}	hAZ		hAZ		HAZ	hhZ AAZ	$AH^{\pm}Z$	hHZ		$hH^{\pm}Z$
j. λ_{HAZ}		HAZ	HAZ		hAZ	hHZ		HHZ AAZ	$AH^{\pm}Z$	$HH^{\pm}Z$
k. $\lambda_{H^+H^-Z}$				H^+H^-Z						
l. $\lambda_{hH^+W^-}$	hH^+W^-			hH^+W^-	HH^+W^-		$\frac{hhW^{\pm}}{H^{+}H^{-}W^{\pm}}$		hHW^{\pm}	hAW^{\pm}
m. $\lambda_{HH^+W^-}$		HH^+W^-		HH^+W^-	hH^+W^-		hHW^{\pm}	$\frac{HH^+W^-}{AH^+W^-}$	$\begin{array}{c} HHW^{\pm} \\ H^{+}H^{-}W^{\pm} \end{array}$	HAW^{\pm}
n. $\lambda_{AH^+W^-}$			AH^+W^-				hAW^{\pm}		HAW [±]	

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.01147]

Couplings at the LHC

(Enhanced) Access compared to the di-Higgs states?

Coupling	1.hh	2.HH	3.AA	$4, H^+H^-$	5. hH	6. hA	$7. hH^{\pm}$	8. HA	9. HH^{\pm}	10. AH^{\pm}
a. λ_{hhh}	$(hhh)^*$				$(hhH)^*$	$(hhA)^*$	$(hhH^{\pm})^*$			
b. λ_{hhH}		hhH			hhh			hhA	hhH^{\pm}	
c. λ_{hHH}		$(hHH)^*$			$(hhH)^*$ hH^+H^-			$(hHA)^*$	$(hHH^{\pm})^*$	
d. λ_{hAA}	(hAA)		$(hAA)^*$	$(hH^+H^-)^*$	HAA	(hhA)* AAA	$(AAH^{\pm})^*$	$(hHA)^*$		
e. $\lambda_{hH^+H^-}$	hH^+H^-			$(hH^+H^-)^*$	HH+H-	AH ⁺ H ⁻	$(hhH^{\pm})^{*}$ $H^{+}H^{-}H^{\pm}$		$(hHH^{\pm})^{*}$	$(hAH^{\pm})^*$
f. λ_{HHH}		$(HHH)^*$			$(hHH)^*$			$(HHA)^*$	$(HHH^{\pm})^*$	
g. λ_{HAA}		HAA	$(HAA)^*$		hAA	$(hHA)^*$		$\frac{HHA}{AAA}^*$	AAH [±]	HAH^{\pm}
h. $\lambda_{HH^+H^-}$		HH+H-		(HH+H-)*			$(hHH^{\pm})^*$	AH ⁺ H ⁻	$(HHH^{\pm})^*$ $H^+H^-H^{\pm}$	$(HAH^{\pm})^*$
i. λ_{hAZ}	hAZ		hAZ		HAZ	hhZ AAZ	$AH^{\pm}Z$	hHZ		$hH^{\pm}Z$
j. λ_{HAZ}		HAZ	HAZ		hAZ	hHZ		HHZ AAZ	$AH^{\pm}Z$	$HH^{\pm}Z$
k. $\lambda_{H^+H^-Z}$				H^+H^-Z				93. GI		
l. $\lambda_{hH^+W^-}$	hH^+W^-			hH^+W^-	HH^+W^-		$\frac{hhW^{\pm}}{H^{+}H^{-}W^{\pm}}$	10 W	hHW^{\pm}	hAW^{\pm}
m. $\lambda_{HH^+W^-}$		HH^+W^-		HH^+W^-	hH^+W^-		hHW^{\pm}	$\frac{HH^+W^-}{AH^+W^-}$	$\begin{array}{c} HHW^{\pm} \\ H^{+}H^{-}W^{\pm} \end{array}$	HAW^{\pm}
n. $\lambda_{AH^+W^-}$			AH^+W^-				hAW^{\pm}		HAW [±]	

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.01147]

Concluding remarks

- The 2HDM Higgs bosons other than the h_{125} one, even when lighter than it, can be challenging to produce singly at the LHC
- Their pair-production might lead to some unconventional, but relatively clean, signatures
- For certain 2HDM parameter configurations, EW production of di-Higgs states can dominate over QCD production
- Access to some triple-Higgs couplings offered by these states can be greatly supplemented by the tri-Higgs probes

THANK YOU! MURAKOZE!