

Higgs to Bosons

Comparison

Karsten KönekeUniversity of Freiburg

Thanks to Giada Mancini (ATLAS) and Arun Kumar (CMS) for providing me with early versions of their slides!

STXS Stage-0 Results

- $H \rightarrow ZZ^* \rightarrow 4\ell$
 - Still statistics limited with 140 fb-1
 - ggF measurement precision reaches precision of SM prediction
- $\bullet \quad H \longrightarrow YY$
 - Systematics for ggF and VBF similar size as 80 fb⁻¹ statistics

Full Run-2 H \rightarrow ZZ* \rightarrow 4 ℓ STXS Stage 1.1

Karsten Köneke

\sim 36 fb-1 H \rightarrow WW* \rightarrow $\ell\nu\ell\nu$

$$\mu_{\rm ggF} = 1.10^{+0.10}_{-0.09}({\rm stat.})^{+0.13}_{-0.11}({\rm theo~syst.})^{+0.14}_{-0.13}({\rm exp~syst.}) = 1.10^{+0.21}_{-0.20}$$

$$\mu_{\text{VBF}} = 0.62^{+0.29}_{-0.27}(\text{stat.})^{+0.12}_{-0.13}(\text{theo syst.}) \pm 0.15(\text{exp syst.}) = 0.62^{+0.36}_{-0.35}$$

$$\mu_{WH} = 2.3^{+1.1}_{-0.9}(\text{stat.})^{+0.41}_{-0.33}(\text{theo syst.})^{+0.49}_{-0.36}(\text{exp syst.}) = 2.3^{+1.2}_{-1.0}$$

$$\mu_{ZH} = 2.9^{+1.7}_{-1.3}(\text{stat.})^{+0.66}_{-0.27}(\text{theo syst.})^{+0.54}_{-0.28}(\text{exp syst.}) = 2.9^{+1.9}_{-1.3}$$

- Experimental and theoretical systematic ~equal
- Statistical uncertainty in ggF < systematic

Karsten Köneke

Treatment of Theory Uncertainties

• Example: $H \rightarrow ZZ^* \rightarrow 4\ell$

Systematic	ATLAS EXPERIMENT	CMS pioned to the property of
μR and μF	8-point variation: Vary by 0.5 and 2.0; No further constraint	6-point variation: Vary by 0.5 and 2.0; Constrain 0.5 $< \mu_R/\mu_F < 2.0$
PDF	PDF4LHC_NLO_30 Hessian eigenvector variations: NNPDF3.0 eigenvectors + alternative nominal (MMHT2014, CT14)	NNPDF eigenvector variations

Karsten Köneke 5 /22

Full Run-2 H \rightarrow ZZ* \rightarrow 4 ℓ STXS Stage 1.1

Karsten Köneke 7 /22

~80 fb- 1 H $\rightarrow \gamma\gamma$ STXS Stage 1.1

Karsten Köneke 8 /22

~80 fb- 1 H $\rightarrow \gamma\gamma$ STXS Stage 1.1

CMS piounous unmu solemon

CMS Supplementary H→γγ

77.4 fb⁻¹ (13 TeV)

,														1 I
qqH other	-0.11	-0.41	-0.68	-0.64	-0.54	-0.48	-0.64	-0.77	-0.82	-0.00	-0.14	-0.03	1.00	1
qqH 3J-like	-0.26	0.12	0.12	-0.18	-0.06	0.51	0.35	0.33	-0.01	-0.96	0.74	1.00	-0.03	8.0
qqH 2J-like	-0.22	0.12	0.16	-0.10	-0.00	0.48	0.35	0.36	0.07	-0.83	1.00	0.74	-0.14	0.6
ggH VBF-like	0.29	-0.10	-0.10	0.21	80.0	-0.52	-0.34	-0.32	0.03	1.00	-0.83	-0.96	-0.00	0.4
ggH 2J BSM	0.13	0.34	0.56	0.57	0.36	0.37	0.58	0.66	1.00	0.03	0.07	-0.01	-0.82	
ggH 2J high	-0.00	0.36	0.56	0.33	0.40	0.53	0.64	1.00	0.66	-0.32	0.36	0.33	-0.77	0.2
ggH 2J med	0.00	0.33	0.30	0.33	0.31	0.47	1.00	0.64	0.58	-0.34	0.35	0.35	-0.64	0
ggH 2J low	-0.07	0.03	0.39	0.21	0.22	1.00	0.47	0.53	0.37	-0.52	0.48	0.51	-0.48	-0.2
ggH 1J BSM	0.11	0.21	0.37	0.40	1.00	0.22	0.31	0.40	0.36	0.08	-0.00	-0.06	-0.54	
ggH 1J high	0.16	0.26	0.43	1.00	0.40	0.21	0.33	0.33	0.57	0.21	-0.10	-0.18	-0.64	-0.4
ggH 1J med	0.03	0.29	1.00	0.43	0.37	0.39	0.30	0.56	0.56	-0.10	0.16	0.12	-0.68	-0.6
ggH 1J low	-0.24	1.00	0.29	0.26	0.21	0.03	0.33	0.36	0.34	-0.10	0.12	0.12	-0.41	-0.8
ggH 0J	1.00	-0.24	0.03	0.16	0.11	-0.07	0.00	-0.00	0.13	0.29	-0.22	-0.26	-0.11	_1

99H 0J99H 1J99H 1J99H 1J99H 1J99H 2J99H 2J99H 2J99H 2J99H 2J99H 2J99H 3J99H 3J99H 3J99H 0ther

9 /22

~80 fb- 1 H \rightarrow $\gamma\gamma$ STXS Stage 1.1

Karsten Köneke 10/22

~80 fb⁻¹ H $\rightarrow \gamma\gamma$ STXS Stage 1.1

Karsten Köneke II/22

(Fiducial) Cross-Sections and μ

• Different definitions of fiducial phase space

Channel

$$H \rightarrow ZZ^* \rightarrow 4\ell$$

$$\sigma_{
m fid.} = 2.73^{+0.30}_{-0.29} = 2.73^{+0.23}_{-0.22} ({
m stat.})^{+0.24}_{-0.19} ({
m syst.}) {
m fb}$$
 $\sigma_{
m fid.}^{
m SM} = 2.76 \pm 0.14 {
m fb}$

$$H \rightarrow \gamma \gamma$$

$$\sigma_{\text{fid}} = 65.2 \pm 4.5 \text{ (stat.)} \pm 5.6 \text{ (syst.)} \pm 0.3 \text{ (theo.) fb}$$

SM prediction: 63.3 +- 3.3 fb

$$\sigma_{ggH}/\sigma_{ggH}^{SM} = 1.15^{+0.15}_{-0.15}$$

$$\sigma_{ggH}/\sigma_{ggH}^{SM} = 0.8^{+0.4}_{-0.3}$$

$$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$$

$$\sigma_{ggF} \cdot \mathcal{B}_{H \to WW^*} = 11.4^{+1.2}_{-1.1}(\text{stat.})^{+1.2}_{-1.1}(\text{theo syst.})^{+1.4}_{-1.3}(\text{exp syst.}) \text{ pb}$$

$$= 11.4^{+2.2}_{-2.1} \text{ pb} \quad (\text{SM:} 10.4 \pm 0.6 \text{ pb})$$

$$\sigma_{VBF} \cdot \mathcal{B}_{H \to WW^*} = 0.50^{+0.24}_{-0.22}(\text{stat.}) \pm 0.10(\text{theo syst.})^{+0.12}_{-0.13}(\text{exp syst.}) \text{ pb}$$

$$= 0.50^{+0.29}_{-0.28} \text{ pb} \quad (\text{SM:} 0.81 \pm 0.02 \text{ pb})$$

$$\sigma_{WH} \cdot \mathcal{B}_{H \to WW^*} = 0.67^{+0.31}_{-0.27}(\text{stat.})^{+0.11}_{-0.09}(\text{theo syst.})^{+0.14}_{-0.11}(\text{exp syst.}) \text{ pb}$$

$$(\text{SM:} 0.293 \pm 0.007 \text{ pb})$$

$$\sigma_{ZH} \cdot \mathcal{B}_{H \to WW^*} = 0.54^{+0.31}_{-0.24}(\text{stat.})^{+0.11}_{-0.05}(\text{theo syst.})^{+0.10}_{-0.05}(\text{exp syst.}) \text{ pb}$$

$$(\text{SM:} 0.189 \pm 0.007 \text{ pb})$$

$$\mu = 1.28 \pm 0.10 \text{ (stat)} \pm 0.11 \text{ (syst)}_{-0.07}^{+0.10} \text{ (theo)}$$

$$= 1.28_{-0.17}^{+0.18}$$

Example of different fiducial definitions

	Leptons and jets			
Leptons	$p_{\rm T} > 5 {\rm ~GeV}, \ \eta < 2.7$			
Jets	$p_{\rm T} > 30 \; {\rm GeV}, y < 4.4$			
remove jets with	$\Delta R(\mathrm{jet},\ell) < 0.1$			
Lepton selection and pairing				
Lepton kinematics	$p_{\rm T} > 20, 15, 10 {\rm ~GeV}$			
Leading pair (m_{12})	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Subleading pair (m_{34})	remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Event selection (at most one quadruplet per event)				
Mass requirements	$50 \text{ GeV} < m_{12} < 106 \text{ GeV} \text{ and } 12 \text{ GeV} < m_{34} < 115 \text{ GeV}$			
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$			
J/ψ veto	$m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOS lepton pairs			
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$			
If extra leptons with $p_{\rm T} > 12~{\rm GeV}$	Quadruplet with the largest ME			

Requirements for the $H o 4\ell$ fiducial phase space					
Lepton kinematics and isolation					
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20\mathrm{GeV}$				
Next-to-leading lepton p_T	$p_{\mathrm{T}} > 10\mathrm{GeV}$				
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$				
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$				
Sum of scalar p_T of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{\mathrm{T}}$				
Event topology					
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above					
Inv. mass of the Z_1 candidate	$40\text{GeV} < m_{Z_1} < 120\text{GeV}$				
Inv. mass of the Z_2 candidate	$12\text{GeV} < m_{Z_2} < 120\text{GeV}$				
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$				
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4\mathrm{GeV}$				
Inv. mass of the selected four leptons	$105{ m GeV} < m_{4\ell} < 140{ m GeV}$				

Objects	Fiducial definition
Photons	$ \eta < 2.37 \text{ (excluding } 1.37 < \eta < 1.52), \sum p_{\mathrm{T}}^{i}/p_{\mathrm{T}}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30 \text{ GeV}$, $ y < 4.4$
Diphoton	$N_{\gamma} \ge 2$, $105 GeV < m_{\gamma\gamma} < 160 GeV$, $p_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 0.35$, $p_{\rm T}^{\gamma_2}/m_{\gamma\gamma} > 0.25$

Karsten Köneke 13/22