Higgs theoretical predictions in the precision era

Fabrizio Caola

Rudolf Peierls Centre for Theoretical Physics & Wadham College

Higgs Hunting 2019, July 29th 2019

Higgs measurements: a snapshot

- All major channels observed
- More differential information is now available
- Precise studies of the Higgs sector well ongoing
- By and large, theoretical predictions in very good status... but experiments are catching up quickly

Higgs theoretical predictions

- Thorough investigations of the Higgs sector possible at the (HL-)LHC
- They require accurate predictions for several complex processes → <u>highly non trivial</u>
- Higgs was a key player in pushing forward collider phenomenology → in general,
 very refined predictions available

Gluon fusion: inclusive results

- SM prediction for ggF cross-section extremely advanced
- N³LO corrections to <u>inclusive</u> cross-section known [Anastasiou et al. (2015), Mistlberger (2018)]
- N³LO residual uncertainty: few percent. At this level, many other effects play a role...

```
\sigma = 48.58 \text{ pb}_{-3.27 \text{ pb}}^{+2.22 \text{ pb}} (+4.56\%)
                                      (theory) \pm 1.56 \, \text{pb} (3.20\%) \, (\text{PDF} + \alpha_s).
48.58 \, \text{pb} =
                    16.00\,\mathrm{pb}
                                     (+32.9\%)
                                                            (LO, rEFT)
                                                            (NLO, rEFT)
                 +20.84 \, \mathrm{pb}
                                     (+42.9\%)
                                                           ((t,b,c), exact NLO)
                     2.05 \,\mathrm{pb} (-4.2\%)
                                                           (NNLO, rEFT)
                 + 9.56 \,\mathrm{pb} \quad (+19.7\%)
                      0.34\,\mathrm{pb}
                                   (+0.7\%) (NNLO, 1/m_t)
                      2.40\,\mathrm{pb}
                                   (+4.9\%)
                                                           (EW, QCD-EW)
                                                            (N^3LO, rEFT)
                 + 1.49 pb
                                   (+3.1\%)
     Todo List: - Full mass dependent NNLO
                           - Mixed \mathcal{O}(\alpha \alpha_S) corrections
                           - N3LO PDFs
                    \delta(\text{trunc})
                                 \delta(\text{PDF-TH})
                                                  \delta(EW)
                                                                            \delta(1/m_t)
       \delta(scale)
                                                               \delta(t,b,c)
       +0.10 \text{ pb}
                                   \pm 0.56 pb
                                                 \pm 0.49 \text{ pb}
                                                              \pm 0.40~\mathrm{pb}
                                                                           \pm 0.49 \text{ pb}
       -1.15 \text{ pb}
        +0.21\%
                                   \pm 1.16\%
                                                    \pm 1\%
                                                               \pm 0.83\%
                                                                             \pm 1\%
```

progress: Melnikov, Penin (2016); Melnikov, et al. (2016-18); Jones, Kerner, Luisoni (2018)

progress: Bonetti, Melnikov, Tancredi (2017-18); Anastasiou et al (2018)

SEE E. FURLAN'S TALK

THIS AFTERNOON

[Mistlberger (2018)]

-2.37%

Gluon fusion: going differential

- Inclusive cross section is an idealised quantity, very far from what we measure
- Reliable prediction: properly model fiducial volume of experiment → fully differential. Only known at NNLO [+PS]
- H is scalar: fully differential = p_t + rapidity

Higgs rapidity (ggF)

- Computed @N³LO in a soft expansion (~inclusive)
- Expected to work very well (apart from end-points)
- Remarkably flat K-factor (as expected from previous orders)
- Combined with pt@NNLO, can give access to N³LO fiducial volume

pt,H: a major probe for Higgs physics

pt,H: a major probe for Higgs physics

Higgs pt: the bulk of the distribution

- In the region $p_t \ll m_t : ggF$ effective vertex, point-like interaction \rightarrow massive simplification for calculations
- m_t-suppressed terms under good control see e.g. [Neumann et al (2016)]

- In the HEFT approximation: fully differential NNLO p_t distribution known for quite a long time:
 - * Boughezal, FC et al. (2015)
 - * Boughezal et al., SCET-based (2015)
 - * Chen, Gehrmann, Glover, Jaquier (2015)
 - * Ellis, Campbell, Seth (2019) \rightarrow <u>detailed validation of the different methods</u>
- At small p_t : fixed-order non reliable \rightarrow match with resummation

The bulk of the distribution: NNLO+N3LL

- Sophisticated NNLO + N³LL results available, done in two different ways
- The two calculation have the same fixed-order and resummation accuracies
- They only differ by subleading effects (matching procedure...) → <u>test for robustness</u>
- By and large: very stable fixed-order result down to ~40 GeV → very good (<u>fully</u> <u>differential</u>) control of the bulk of the distribution

Low pt: light quark effects

- For $m_q \ll p_t \ll m_H$: amplitude develops non-Sudakov double logs $y_q m_q / m_H \left[\ln^2(m_H^2/m_q^2), \ln^2(p_t^2/m_q^2) \right]$
- Despite $y_{b,c...} \ll y_t$, interference effects may be visible $\rightarrow constrain\ Yukawas!$
- Also: direct $q\bar{q} \rightarrow Hg$ impacts Higgs $p_t \rightarrow powerful$ constraints for light Yukawas

PROBLEM: control over QCD corrections

- Resolved quark loop → very difficult loop amplitudes
 - *beyond state-of-the-art for analytic calculations
 - *large logs → numerical approached difficult
- Low p_t , large logs \rightarrow all-order effects must be considered

t/b interference: not so long ago

- *tb* interference only known at LO
- non trivial interplay with collinear gluons → "standard" resummation machinery does not work. All-order effects non-trivial, and unknown
- not enough information for a proper fixed-order / resummation matching

A pragmatic approach

- use all the available information
- resum under 2 extreme assumptions:
 - *b/t contributions on the same footing
 - *no resummation after $p_t \sim m_b$
- Large residual uncertainties

[Lindert et al. (2017)]

t/b interference: NLO

- 2-loop amplitude for b contribution computed in the limit $m_b \ll p_t \ll m_h$ [Melnikov, Tancredi, Wever (2016-17)]
- Approximation expected to be very good for all pheno applications

- Large *K*-factor...
- ... but similar to HEFT
- Large source of unc. from bmass scheme
- Non-trivial logarithmic structure
- Still don't know how to resum [some work in this direction: Melnikov, Penin (2016); Forte et al (2016); Penin, Liu (2018)]

t/b interference: matching with resummation

[FC, Monni et al. (2018)]

NLO result allows for a proper matching → <u>resummation ambiguities much less severe</u>

t/b interference: matching with resummation

[FC, Monni et al. (2018)]

Reasonable control over t/b interference

- Major source of uncertainty from b-mass scheme \rightarrow can only be improved with higher order calculation
- It will be very hard to improve in this direction
- A common feature of processes involving (active) massive virtual quarks...

Boosted Higgs

- Boosted Higgs very sensitive to BSM contributions, internal structure of ggH coupling...
- Problem: very difficult (multi)-loop amplitudes. Going beyond LO non trivial

Boosted Higgs: NLO

NLO is finally known. 2 approaches:

- analytic result under the assumption $m_{t,h} \ll p_t$ [Kudashkin, Melnikov, Wever,+ Lindert (2017-18)]
- exact numerical result [Jones, Kerner, Luisoni (2018)]

They agree within expectation → <u>important validation</u>

- Large *K-factor*
- Very similar to HEFT *K-factor*.

As expected from

- *merged samples approach [see e.g. Frederix et al (2016), Greiner et al (2016)]
- **approximate m_t treatment [see e.g. Neumann and Williams (2016)]
- *resummation analysis [see e.g. Muselli et al (2016)]

Boosted Higgs: all channels

At large p_t , the ggF dominance becomes less pronounced \rightarrow important to include all channels.

- Interesting interplay of different channels. Different pattern of radiative corrections
- $\bullet \ \underline{NLO \ EW \ corrections \ in \ ggF? \ ln^2(p_t/m_t)?} \\$

Beyond ggF: vector boson fusion

Also in this case, N³LO predictions are known for quantities inclusive over jet activity (not jet requirement/cut possible) [Dreyer, Karlberg (2016)]

- Tiny corrections ~ few permill
- No kinematic feature on top of NNLO
- Is it the end of it? Not so fast...

VBF beyond the DIS approximation

- Typically, VBF predictions are computed in the DIS/``structure functions"/
 ``factorized" approximation [Han, Valencia, Willenbrock (1992)]
- In this approximation, one consider emission from the two quark legs independently, without considering any cross talk

- Results can be borrowed from DIS → much simpler
- Corrections to this approximation expected to be small after VBF cuts (first appear at NNLO, color/kinematics suppression)
- ... but are they small compared to (inclusive) precision (~per mill)?

VBF beyond the DIS approximation

- NNLO <u>exact</u> VBF calculation out of reach (two-loop 2→3 amplitudes well beyond what we can imagine doing in the near future)
- However, <u>possible to estimate the leading non-factorizable contributions</u> the VBF region (two forward/backward tagging jets) [Liu, Melnikov, Penin (2019)]

- \bullet As expected, corrections to inclusive quantities small (~4 permill), although larger than N^3LO
- Interestingly, small corrections come as a cancellation between positive and negative corrections to differential distributions → <u>can reach percent-level in differential distributions</u>

VBF: fully differential results

- For VBF, crucial to proper model the experimental setup (jet requirements)
- Full NNLO(+NLO EW) results in the DIS approximation known

- Corrections in the VBF region <u>much larger than for the inclusive</u> case (most likely due to non-trivial jet dynamics)
- Residual uncertainty $\sim 2-3\% \rightarrow$ non-factorizable contributions smaller, but barely
- For some distribution, bad disagreement with PS \rightarrow NNLOPS?

VBF: fully differential results

- For VBF, crucial to proper model the experimental setup (jet requirements)
- Large differential corrections: VBF very sensitive to tagging jet cuts and jet radius

- NNLO corrections change by $\sim 20\%$ from R=0.1 to R=1.0
- It would be interesting to understand it better
 - *NNLO for VBF+j
 - *NNLOPS [only major channel where this is missing...]

VH: status

• VH: known at NNLO QCD + NLO EW for quite some time

- delicate SM unitarity cancellations between box/triangle → very good probe for new physics [see e.g. Englert, McCullough, Spannowsky (2013), Harlander et al (2019)]
- formally, it starts contributing at NNLO, but enhanced by gluon flux (~10/20% of total NNLO cross-section)
- only known to LO → large residual uncertainties
- currently, only approximate result [Hasselhuhn, Luthe, Steinhauser (2016)], but simplest yet-to-be-computed gg→XY process mediated by top loop. Within current (numerical) technology → expect results soon?

VH: a faithful description of measurements

- VH: important channel for H→bb̄
- <u>Ideally</u>: boosted region. In <u>practice</u>: semi-boosted $(p_{t,V} > 150 \text{ GeV})$
- In the boosted region, decay should be very collinear → well described by PS
- Interesting to study the interplay fixed-order/PS in the semi-boosted region...
- <u>Fixed-order</u>: full NNLO (production⊗decay) [Ferrera, Grazzini Tramontano (2017); FC, Luisoni, Melnikov, Röntsch (2017); Gauld, Gehrmann-de Ridder, Glover, Huss, Majer (2019)]

VH: a faithful description of measurements

How well is the radiation pattern described by PS?

- Off-the shelf PS seems to capture *some* of the radiation pattern
- Now very sophisticated NNLOPS_{prod}⊗NLOPS_{dec} available [Astill et al (2018)]. Similar pattern
- Delicate issues about HF-identification (b-tagging vs flavour k_t)
- More apple-to-apple investigations desirable $(massive \ b...)$

VH: a faithful description of measurements

How well is the radiation pattern described by PS?

- Massive *b* calculation available [Berneuther, Chen, Si (2018); Primo, Sasso, Somogyi, Tramontano (2018)] → *jet algorithm/full b-reconstruction studies*
- Furthermore: <u>fully differential</u> H→bb̄ available [Mondini, Schiavi, Williams (2019)] → more detailed studies on radiation patterns

ttH: the devil in the background...

- Direct probe of top Yukawa coupling
- Known to NLOQCD (+NNLL) + NLOEW, including off-shellness and interference
- Fiducial cuts enhance tails → NLOEW
- $d\sigma \propto y_t^2$ no longer true @NLOEW

Proper description of background problematic.
 Most famous example: ttbb

Selection	Tool	$\sigma_{ m NLO} [{ m fb}]$	$\sigma_{ m NLO+PS}$ [fb]	$\sigma_{ m NLO+PS}/\sigma_{ m NLO}$
$n_b \ge 1$	SHERPA+OPENLOOPS	$12820^{+35\%}_{-28\%}$	$12939^{+30\%}_{-27\%}$	1.01
	MADGRAPH5_AMC@NLO		$13833^{+37\%}_{-29\%}$	1.08
	PowHel		$10073^{+45\%}_{-29\%}$	0.79
$n_b \ge 2$	SHERPA+OPENLOOPS	$2268^{+30\%}_{-27\%}$	$2413^{+21\%}_{-24\%}$	1.06
	MADGRAPH5_AMC@NLO		$3192^{+38\%}_{-29\%}$	1.41
	PowHel		$2570^{+35\%}_{-28\%}$	1.13

• Shower effects enhanced in the Higgs region...

ttH: the devil in the background...

- An heroic ongoing effort to understand / fix the NLO vs NLOPS issue [S. Pozzorini, L. Reina, F. Buccioni, M.V. Garzelli, T. Jezo, J. Krause, A. Kardos, J. Lindert, R. Podskubka, C. Reuschle, F. Siegert, M. Zaro, M. Zoller, *ongoing*]
- A lot of complex delicate issues... cannot make justice to it in a few minutes. Just few highlights, see talks by S. Pozzorini at the HXSWG meetings for more details

Most likely cause of bad behavior: LARGE K-FACTOR ENHANCED BY SHOWER

NLOPS YR4 scales

$p_{T} \text{ of } 1^{\text{st}} \text{ light-jet (ttbb cuts)}$ $NLO \\ POWHEG+PY8 \\ Sherpa 2.2.5 \\ Sherpa YR4 \\ MG5+PY8 \\ MG5+HW7$ $u_{R} = \langle E_{T} \rangle_{\text{geom}}, \mu_{F} = H_{T}/2$ stable ttbb $v_{T} = \frac{10^{T-5}}{2}$ 0.5

NLOPS 0.5 rescaling

- The good news: a more appropriate scale choice removes part of the issue
- The bad news: this does not remove large shower corrections in the $N_b=2$ bin

ttH: the devil in the background...

Most likely cause of bad behavior: LARGE K-FACTOR ENHANCED BY SHOWER

- <u>The bad news</u>: clever scale choice does not remove large shower corrections in the N_b =2 bin
- Most likely culprit: large recoil effect / bin migration
- To fix it: need to understand better QCD radiation pattern, find good observables sensitive to it

Once again, it would be crucial to better understand jet dynamics, g→bb̄ splitting etc...

Very interesting theoretical

problem, not limited to tīH (e.g.:

V+HF for VH...)

HH: good theory, but difficult to improve...

• HH production: direct probe of Higgs self-coupling

- Still far from measurements, but still important to have good theoretical control.
- The (usual) problem: LO is loop-induced \rightarrow NLO is already 2-loop, with massive virtual fermions \rightarrow cannot do it analytically yet (although a lot of progress...)
- Same problem of boosted Higgs, gg→ZH, gg→VV/off-shell interference...
- In some sense, the ``simplest'' process in this class \rightarrow a lot of attention.
- Analytic side: several approximations.
- Numerical techniques developed, we now have <u>full NLO result</u> [Borowka et al (2016), Baglio et al (2018)]

HH@NLO: lesson learned

- Reasonable approximations to extend 1/m_t result beyond the top threshold (rescaled Born, exact real radiation) can fail quite significantly
- Exact K-factor much less flat than for m_t approximations

Still unclear why this is happening

- It would be interesting to study different approximations, to understand better what is going on [see e.g. Xu, Yang (2018)]
- It would be interesting to study other processes, to gain extra information (ZZ, Hj, VH)

HH@NLO: applications

- NLO calculations used as a basis for several applications. For example:
 - NLOPS [Heinrich et al. (2017)]
 - Informing analytic approximations to extend calculation at high invariant mass [Davies et al. (2019)]
 - NLO+NNLO $_{mt\to\infty}$ [de Florian et al. (2016), Grazzini et al (2018)], +NNLL $_{soft}$ [de Florian, Mazzitelli (2018)]

A very good control...

\sqrt{S}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
NNLO _{FTapprox} [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	±3.4%	±4.6%
$NNLO_{FTapprox}/NLO$	1.118	1.116	1.096	1.067

... with a very big caveat

HH@NLO: mass-scheme dependence

- Result <u>depends non-trivially on the renormalisation scheme and scale for the top</u> <u>quark mass</u> [Baglio et al (2019)]
- Ambiguities substantially larger than ``standard'' uncertainties (careful in identify TH uncertainty with ``naive'' scale variation...)

$$\begin{split} \frac{d\sigma(gg \to HH)}{dQ} \Big|_{Q=300 \text{ GeV}} &= 0.0298(7)^{+6\%}_{-34\%} \text{ fb/GeV}, \\ \frac{d\sigma(gg \to HH)}{dQ} \Big|_{Q=400 \text{ GeV}} &= 0.1609(4)^{+0\%}_{-13\%} \text{ fb/GeV}, \\ \frac{d\sigma(gg \to HH)}{dQ} \Big|_{Q=600 \text{ GeV}} &= 0.03204(9)^{+0\%}_{-30\%} \text{ fb/GeV}, \\ \frac{d\sigma(gg \to HH)}{dQ} \Big|_{Q=1200 \text{ GeV}} &= 0.000435(4)^{+0\%}_{-35\%} \text{ fb/GeV}, \end{split}$$

- Unfortunately, natural to expect (and also seen in *b*-contribution to the Higgs p_t spectrum [Melnikov, Tancredi, Wever (2017)])
- For bulk ggF: top is not active \rightarrow effect not there (this is the exception!)
- Honest solution: one order higher, i.e. NNLO for a process for which we can only barely compute NLO... quite some fun ahead...

Conclusions

- A 125 GeV Higgs: sweet spot for thorough studies of its properties
- LHC measurements progressing very fast
- Higgs has always been one of the main player in pushing our understanding of QCD and collider phenomenology
- A lot of recent progress → could not make justice to it. Among missing items
 - Off-shell
 - Background issues (ggF contamination to VBF, PS/UE effects...)
 - EW
 - Higgs and complex final states
 - EFT/BSM. Future colliders...
- Apologies if I skipped your favourite topic!
- The general picture: theory in a pretty good shape, but still a lot to be done
- In many cases, this requires some non-trivial improvement in our understanding of QCD/EW/collider pheno, that would have actual implication for real-world Higgs explorations → EXCITING TIMES AHEAD!

Thank you very much!