Higgs physics at HL-LHC

Bill Murray, Higgs Hunting, 29rd July 2019 On behalf of the ATLAS collaboration

"Vague but exciting"

ATL-PHYS-PUB-2018-053 HH & self coupling ATL-PHYS-PUB-2018-054 H properties ATL-PHYS-PUB-2019-008 H → TT CP

The SM

- "A hunched black beast made of razor edges and barbs and ribbons of sharp metal; a chair that could kill a man"
 - George R R Martin
- Is HL-LHC going to be able to melt it?

Timeline

- LS3 in 2024 has major accelerator & ATLAS work
- From mid 2026 move into 200 pile-up events/BX
 - Luminosity limited by detectors constraints
 - Maintain maximum digestible rate for hours

The REAL Higgs factory

- All very difficult.....
 - "Men were real men, women were real women, small green furry creatures from alpha centauri were <u>real</u> small green furry creatures from alpha centauri"
- Seriously, it is a dirty, dangerous (for detectors) and harsh environment
 - But it will work...if we can work out how to handle it
- •Most results so far are from 36fb⁻¹
 - Extrapolations and HL-LHC studies are for 3-4ab⁻¹
 - It's a big jump and not all will be done perfectly.
 - It is unlikely the final analyses will be done the same way

ATLAS upgrades

•Muons:

- Innermost layers upgraded,
- New Small Wheels

Tracker:

New: All-silicon Itk

Timing:

 High Granularity Timing Detector in endcaps

ATLAS upgrades

- Calorimeter: front end electronics replaced
 - Higher granularity
- Trigger total rebuild for 10x rate
 - Aim for similar thresholds
 - Non-trivial as pileup makes events more complex

HL-LHC events

- Harsh environment
- Pileup goes from O(40) mean to O(200)
- Tracking scales factorially with hit density
 - Currently we do not have affordable solutions
 - This needs intellectual input now.

Computing model

- Assume a flat budget gives 20% improvement per year
 - Not guaranteed
- Revised 2018
 computing model reduces demand
- Then with fast sim / reco / generators we ~ cope
 - Run 4 will be tough

Systematic assumptions

MC stats assumed negligible

S1: Assume current uncertainties (safe)

S2: Theory ½, lumi 1%

Used here

Detectors as detailed below

Source	Component	Run 2 unc.	Projection minimum unc.
Muon ID		1-2%	0.5%
Electron ID		1– $2%$	0.5%
Photon ID		0.5 – 2%	0.25 – 1%
Hadronic τ ID		6%	Same as Run 2
Jet energy scale	Absolute	0.5%	0.1 – 0.2%
	Relative	0.1 – 3%	0.1 – 0.5%
	Pileup	0-2%	Same as Run 2
	Method and sample	0.5 – 5%	No limit
	Jet flavour	1.5%	0.75%
	Time stability	0.2%	No limit
Jet energy res.		Varies with p_T and η	Half of Run 2
$ec{p}_{\mathrm{T}}^{\mathrm{miss}}$ scale		Varies with analysis selection	Half of Run 2
b-Tagging	b-/c-jets (syst.)	Varies with p_T and η	Same as Run 2
	light mis-tag (syst.)	Varies with p_T and η	Same as Run 2
	b-/c-jets (stat.)	Varies with p_T and η	No limit
	light mis-tag (stat.)	Varies with p_T and η	No limit
Integrated lumi.		2.5%	1%

Higgs Production x decay

S2 sys

ZZ, qq, WW, tt and bb modes

Production and decay modes

- •Assume decay, measure production & vice versa
- All systematics limited, except μμ & Ζγ
 - Expect μμ clearly seen, 4.9σ for Zγ

Extracted couplings v mass

S2 sys

Parameter value

Extracted couplings

- 10 parameter general fit
 - Imposing UL on W,Z
- •Gives 2-4% precision
 - Except μ &Zγ
- •3.3% limit on non-SM decays, e.g. DM

Hcc coupling

- Several approaches target Hcc (H → J/ψγ or H pT)
 - Most straightforward is VH, H→cc
- Four regions considered
 - 1 or 2 c tags
 - High or low p_T Z → II
 - Best is shown right
 - Signal multiplied by 100!
- Observation not expected
 - But expected limit 6.3xSM cross-section (stat only)
 - Z → neutrinos will add some sensitivity
 - As will analysis optimisation

Differential distributions: ZZ+yy

- Higgs p_⊤ up to 1 TeV 10% precision or better
 - Statistics important here
- High-pT bin can be divided
- •May be possible to add H → bb at high pT.

H→**TT CP** properties

- Analysing tau decays probes coupling to fermions
 - CPX in MSSM hidden in bosons
- Use ττ→ ρνρν decays
- •Analyse $\rho \rightarrow \pi^+\pi^0$ energy sharing
 - As a probe of angle
- Use VBF and ggF production
 - In low/high pT modes
- Results depend upon π⁰ resolution

 - for $1 \leftrightarrow 2x$ nominal π^0 resolution

Di Higgs production

- Right:Branching ratios of various decay modes
- Red circled channels have ATLAS projections
- Purple have results at 13 TeV

Many weak channels are not exploited – some gain possible

HH → bbbb

- Extrapolating 36fb⁻¹ analysis
 - Assumed 8% improvement in btag
 - From Itk improved performance
- Cocktail of multi-b triggers
 - 1 hard b, 225 Gev pT
 - 2 soft b, 35 or 55 GeV
 - Finally 90% efficient for SM
- The multijet background error is hard to predict
- •UL from 1.5 to 3.3 x SM
 - Depending on this error

HH → bbtt

- The 36fb-1 analysis is extrapolated
- In and hh channels analyses
 - hh, shown right, most powerful

Last bin	$ au_{ m lep} au_{ m had}$ channel		$ au_{ m had} au_{ m had}$ channel
Last offi	(SLT)	(LTT)	
$t\bar{t}$ fake- $\tau_{ m had-vis}$	-	-	12.9 ± 2.0
$t\bar{t}$	235 ± 6	360 ± 30	0
Single top	283 ± 15	54 ± 3	0
Multijet fake- $\tau_{\text{had-vis}}$	-	-	33.7 ± 7.2
Fake- $\tau_{\rm had-vis}$	300 ± 10	97 ± 9	-
$Z \rightarrow \tau \tau + (bb, bc, cc)$	340 ± 20	470 ± 40	95 ± 16
Other	105 ± 5	61 ± 7	12.2 ± 2.1
SM Higgs boson	78 ± 4	31 ± 2	55 ± 3
Total background	1343 ± 25	1069 ± 55	209 ± 17
SM HH	32.8 ± 1.6	9.8 ± 0.5	32 ± 3

Expected UL 1xSMσ

HH → bbyy

- H → γγ has good resolution & triggering;
 H → bb is high rate,
 Use BDT to separate from background
- •Two comparable backgrounds:
 - Continuum (sidebands)
 - 3.7 in 123-127
 - Single Higgs peaking
 - 3.2 in 123-127 (50% ttH)
- Signal 6.5 expected
- Expected UL 1.2xSMσ

Dominant systematics	Signal	H Background
Photon energy resolution	14%	14%
Jet Energy Resolution	2.9%	7.8%
QCD scale	2.5%	~11%

Combined sensitivity to HH

Channel	Statistical-only	Statistical + Systematic
$\overline{HH o bar b}bar b$	1.4	0.61
$HH \to b\bar{b}\tau^+\tau^-$	2.5	2.1
$HH \to b\bar{b}\gamma\gamma$	2.1	2.0
Combined	3.5	3.0

•The fitted HH signal μ can be extracted with about a 40% error

Caution on predictions

- •ATLAS 36fb⁻¹ HH summary
 - bbWW at 305 x SM!
 - Looks pretty hopeless?

Caution on predictions

- •ATLAS 36fb⁻¹ HH summary
 - bbWW at 305 x SM!
 - Looks pretty hopeless?
- But 139fb⁻¹ bbWW
 - Dileptonic; previous was single-lepton
 - Expected limit 29xSM
 - Factor 10 improvement
- •Good ideas and hard work can still improve all the results

Di Higgs interpretation

Destructive interference between box and triangle

- •Varying κ_{λ} injects signal
 - Mostly at low m_{HH}
- Example for bbγγ right
- Low mass is harder to trigger for bb and ττ modes
 - Limits degrade

Limits V K_{\lambda}

- •Cross-section at SM κ_{λ} =1 and κ_{λ} =4 similar
 - Therefore approx degeneracy
 - But kinematics is different
- Result is second minimum in LR v κ_λ gg
 - Could be reduced by more detailed m_{HH} study
- •Expected exclusion: κ_{λ} <0.4 or > 7.4

Searches continue: h/A to TT

Tau pair in

 I-h and
 h-h
 channels

 with b-tag

 or b-veto

Expect to be sensitive to tan β>12 for m_A<1TeV in hMSSM
 Still sensitive at m_A=2TeV

More searches

- The list is long and incomplete
- Many potential new physics scenarios are possible
 - Many of them weakly coupled / aligned
- Examples:
 - h125 → Za
 - A light `a' decaying to photons or even stable
 - $H_3 \rightarrow H_2H_1$ with any of these 125 GeV
 - H⁺ → Wh τν or tb
 - bH,H → μμ
 - $H \rightarrow aa \rightarrow \{bb, \tau\tau, \mu\mu, jj, \gamma\gamma, invisible\}^2$
 - \bullet H⁺⁺ \rightarrow W⁺W⁺
- One small Higgs can ruin all your plans

Conclusions

- The HL-LHC programme holds many exciting Higgs Hunting opportunities
 - The H125 couplings potential is excellent
 - The rare, and invisible decays will be strongly probed
 - The diHiggs studies are a must
 - 3 sigma evidence for HH seems possible
 - All studies of the BEH field are critical right now
 - And the search programme extended
- But to make it real we have to invest effort in hardware and software upgrades
 - These are comparable to building ATLAS (&CMS)
 - And will not happen without dedicated effort

How to punch a hole?

Higgs mass and width

- Higgs mass will improve from current 240 MeV (ATLAS)
 - 52 MeV if no improvements made
 - 47 MeV if Itk yields 30% resolution improvement
 - 33-38 MeV If also scale uncertainty reduced 50-80%
- Width
 - CMS project range 2-6 MeV @95%CL 15
 - S1/S2 similar here

Self coupling from single H

- Higgs self coupling is major target
- Loop diagrams mean single Higgs rates are sensitive
 - Especially using distributions
 - ttH structure different
- Extract limits on coupling:

$$\kappa_{\lambda} = 4.0^{+3.7}_{-3.6} (\mathrm{stat.})^{+1.6}_{-1.5} (\mathrm{exp.})^{+1.3}_{-0.9} (\mathrm{sig.th})^{+0.8}_{-0.9} (\mathrm{bkg.th})$$
$$-3.2 < \kappa_{\lambda} < 11.9 \ \ \text{@ 95\% CL}$$

- Tighter than direct HH:
 - $-5 < \kappa_{\lambda} < 12.1$
 - But using more data

Invisible Higgs

- CMS released a new combination of datasets
 - Most powerful invisible Higgs limit
 - 15% expected, 19% observed
- ATLAS 13 TeV result:
 - 17% expected, 26% observed
 - Both have small preference for positive decay fraction?