Measurements of Higgs boson production in association with top quarks with the CMS experiment

g 000000

g 000000

Η

 \mathcal{V}_{ℓ}

h

Marco Peruzzi (CERN) on behalf of the CMS Collaboration

> 10th Higgs Hunting workshop Orsay - Paris, France, 29th - 31st July 2019

Introduction

ΖZ

Zν

10⁻²

 10^{-3}

- top Higgs coupling at the LHC:
 - associated production provides direct sensitivity (tree level coupling)
 - indirect sensitivity from gluon fusion (without BSM particles in the loop)
- - ttH, H → bb: complex hadronic backgrounds (tt+heavy flavour)
 - ttH, H → WW*,ZZ*,ττ → leptons: tt+V backgrounds, mis-identified leptons
 - ttH, $H \rightarrow \gamma \gamma$, 4 ℓ : cleanest, but low decay rate

Measurements of Higgs boson production in association with top quar

ttH measurements in CMS

ttH production was first established by CMS with Run 1 and 2016 data:
 Phys. Rev. Lett. 120
 (2018) 231801

- Searches in all channels have been improved and extended since then:
 - 4ℓ: with the full Run 2 dataset 137 fb⁻¹
 - bb, multi-lepton, γγ: based on the 2016 and 2017 datasets 77.4 fb⁻¹

tt + b-jets final states

CMS PAS HIG-18-030

Challenging final state:

- irreducible background from tt + heavy flavour jets: modeled with Powheg
 [new: per-event weights for ISR/FSR uncertainties]
- large jet combinatorics
- **QCD background** in 0-lepton categories

Key ingredients:

- b-tagging: efficiency improved by ~10% at 1% mistag probability w.r.t. 2016 (new pixel detector and DeepCSV algorithm)
- advanced methods to reduce backgrounds (neural networks, matrix element)

- BDT discriminant trained against inclusive tt background:
 - kinematic variables of physics objects, continuous b-tagging information
 - matrix element score, invariant masses and angular separations

Marco Peruzzi (CERN)

ttH→bb, 1 ℓ categories

ttH→bb, 0ℓ categories

- Handles to reduce the dominant QCD background:
 - discrimination of **quark vs. gluon** jets (likelihood ratio)
 - variable built from average jet angular separation [new]
- Signal extracted by a fit to a matrix element discriminant
- Background normalized from control regions with looser b-tag requirements

Results

CMS PAS HIG-18-030

2017 result: $\mu = 1.49 + 0.44 - 0.40$, 3.7 σ significance (2.6 σ expected)

- 2016+2017 combination: $\mu = 1.15^{+0.32}_{-0.29}$, 3.9 σ significance (3.5 σ expected)
- Very significant improvements in the control of backgrounds result in an impressive boost of the analysis sensitivity

ttH leptonic final states

CMS PAS HIG-18-019

- Target Higgs decays to WW*, ZZ*, ττ
- Channels:
 - 1 lepton + 2 τ_h
 - 2 same-sign leptons + 0,1,2 τ_h
 - 3 leptons + 0,1 $\tau_{\rm h}$

Main selection handles:

- At least 2 loose or 1 medium **b-tagged jets**
- Jet multiplicity (≥4 jets in 2-lep, ≥2 jets in 3-lep)

• non-prompt leptons in tt events: predicted from data

- prompt leptons from **ttV**, VV: from simulation normalized in control regions
- non-prompt leptons in tt events: predicted from data

- prompt leptons from **ttV**, VV: from simulation normalized in control regions
- non-prompt leptons in tt events: predicted from data

Results

CMS PAS HIG-18-019

Source	Uncertainty [%]	$\Delta \mu / \mu$ [%] (2017)
Theoretical sources	pprox 8	8
e, μ selection efficiency	3–5	4
$\tau_{\rm h}$ selection efficiency	5	3
$\tau_{\rm h}$ energy calibration	1.2	1
b tagging efficiency	2–15 [48]	10
Jet energy calibration	2–15 [56]	3
Fake background yield	pprox 30–50	17

 ttV and VV normalizations simultaneously fit using dedicated control regions

- Comparable impacts from theoretical and experimental sources of systematic uncertainty
- 2017 result: $\mu = 0.75 + 0.46 0.43$, 1.7 σ significance (2.9 σ expected)
- 2016+2017 combination: $\mu = 0.96 + 0.34 0.31$, 3.2 σ significance (4.0 σ expected)
- Post-fit ttV normalization shows a slight excess over the SM expectation (NLO cross section), coherent with dedicated tt+V measurements

ttH, H→γγ

- Fit strategy as for the general $H \rightarrow \gamma \gamma$ analysis (see A. Kumar's talk yesterday)
- Categories targeting hadronic (≥2j) and leptonic (1ℓ, ≥1j) top decays
- Dedicated BDT discriminants to enhance the analysis sensitivity, simultaneously using identification and kinematic variables from leptons and jets

- Diphoton mass spectrum is fit in slices of the BDT discriminant score
- Background shape is determined from data using a discrete profiling method

- 2017 result: $\mu = 1.3^{+0.7}_{-0.5}$ 3.1 σ significance (2.2 σ expected)
- 2016+2017 combination: $\mu = 1.7^{+0.6}_{-0.5}$ 4.1 σ significance (2.7 σ expected)

Higgs Hunting 2019

$\begin{array}{ll} \text{Marco Peruzzi} (FRN) & + \ge 1 \\ \hline \textbf{ttH in the 4} \text{formal state} \\ \ge 4 \text{ jets} \end{array}$

CMS PAS HIG-19-001

- Dedicated categories as a part of the $H \rightarrow ZZ$ analysis jets
- Identify hadronic and leptonic tt decays by requiring at least 4 jets, and b-tagging

ttH in the 4% final state

CMS PAS HIG-19-001

- Dedicated categories as a part of the $H \rightarrow ZZ$ analysis
- Identify hadronic and leptonic tt decays by requiring at least 4 jets, and b-tagging

Single top + Higgs

tHq production: sensitive to the sign of the top-Higgs coupling via interference

• Peculiar kinematic features: forward activity, lower jet multiplicity than ttH

Single top + Higgs

Phys. Rev. D 99, 092005 (2019)

• For $\kappa_V = 1$, κ_T ranges outside [-0.9, -0.5] and [1.0, 2.1] are excluded at 95% CL

• Observed (expected) SM-like tH production exclusion at 25 (12) times the SM

Outlook

- CMS has studied the associated production of a Higgs boson with top quarks in all main decay channels, using sophisticated analysis methods
- After the observation of ttH production from their combination, we have now separate evidence in all main channels with a partial Run 2 dataset

Channel	Ľ	μ	Obs. (exp.) significance
bb		1.15 +0.32 -0.29	3.9σ (3.5σ)
WW* / ΖΖ* / ττ	77.4 fb ⁻¹	0.96 +0.34 -0.31	3.2σ (4.0σ)
88		1.7 +0.6 -0.5	4.1σ (2.7σ)
4 ℓ	137 fb ⁻¹	0.13 +0.93 -0.13	-

- All results are compatible with the expectation for SM Higgs boson couplings
- As we move forward to the exploration of the full Run 2 dataset, and beyond, we will focus on an even more precise measurement of the coupling (see E.Fontanesi's talk tomorrow), and differential measurements of ttH production

Additional material

Higgs Hunting 2019

Marco Peruzzi (CERN)

ttH, H→bb

CMS PAS HIG-18-030

Impact of systematic uncertainty sources for the 2016+2017 combination

24	CMS

CMS PAS HIG-18-030

	FH channel	SL channel	DL channel
Number of leptons	0	1	2
$p_{\rm T}$ of leptons (e/ μ) [GeV]	—	> 30/29	> 25/25 GeV
$p_{\rm T}$ of additional leptons [GeV]	< 15	< 15	< 15
$ \eta $ of leptons	< 2.4	< 2.4	< 2.4
Number of jets	≥ 6	≥ 4	≥ 2
$p_{\rm T}$ of jets [GeV]	> 40	> 30	> 30, 30, 20
$ \eta $ of jets	< 2.4	< 2.4	< 2.4
Number of b-tagged jets	≥ 2	≥ 2	≥ 1
$p_{\mathrm{T}}^{\mathrm{miss}}$	—	> 20 GeV	> 40 GeV

Baseline event selection requirements

	$N_{ ext{b tag}} = 2$ $N_{ ext{b tag loose}} \geq 3$	$N_{\rm b \ tag} \geq 3$
QGLR > 0.5	CR (to extract distribution)	SR (final analysis)
QGLR < 0.5	Validation CR (to validate distribution)	VR (comparison with data)

Signal, control and validation region definitions used in the 0-lepton analysis

Marco Peruzzi (CERN)

ttH leptonic

Event selection requirements

Selection	$2\ell ss$	$2\ell ss + 1\tau_h$	Selection	3ℓ
Targeted ttH decays	$t ightarrow b \ell u$, $t ightarrow b q q$,	$t \rightarrow b\ell\nu, t \rightarrow bqq,$	Targeted ttH decays	$t \rightarrow b\ell\nu, t \rightarrow b\ell\nu,$
	$H \to WW \to \ell \nu q q$	$H \to \tau \tau \to \ell \tau_h + \nu' s$		$H \rightarrow WW \rightarrow \ell \nu qq$
Trigger	Single- or d	ouble-lepton triggers		$t \rightarrow d\ell \nu, t \rightarrow dqq, H \rightarrow WW \rightarrow \ell \nu \ell \nu$
Lepton multiplicity	Exa	ctly 2 leptons	Trigger	Single-, de
Lepton $p_{\rm T}$	$p_{\rm T} > 25 \; / \; 15 { m GeV}$	$p_{\rm T} > 25 / 15$ (e) or 10 GeV (μ)	Lepton multiplicity	0
Lepton η	$ \eta < 1$	2.5 (e) or 2.4 (µ)	Lepton $p_{\rm T}$	$p_{\rm T} > 25 / 15 / 15 Ge$
$\tau_{\rm h}$ multiplicity	No $\tau_{\rm h}$ (loose WP)	$\geq 1 \tau_{\rm h}$ (loose WP) and $< 2\tau_{\rm h}$	Lepton η	
Ti fir	_	$n_{\rm T} > 20 {\rm GeV}$	$ au_{ m h}$	No $\tau_{\rm h}$ (loose WP)
Th n		n < 2.3	$c_h p_T$ $\tau_h n$	_
Charge requirements	2 same-	sign leptons and	Charge requirements	$\sum q = \pm 1$
	charge qu	ality requirements	Int multiplicity	ℓ
		$\sum_{\ell \neq \pi} q = \pm 1$	b tagging requirements	>1 tight b-ta
Jet multiplicity	>4 jets	≥ 3 jets	Missing transverse	_ 0 No
b tagging requirements	≥ 1 tight b-tagged	jet or ≥ 2 loose b-tagged jets	momentum	1.00
Missing transverse momentum	LD	> 30 GeV **		L_1
Dilepton mass	$m_{\ell\ell} > 12 \text{GeV}^*$ as	nd $ m_{oo} - m_{z} > 10 \text{GeV}^{**}$	Dilepton mass	$m_{\ell\ell} > 12\mathrm{G}$
			Four-lepton mass	$m_{4\ell} > 140 \mathrm{GeV^{\S}}$
Selection	$\frac{1\ell + 2\tau_{\rm h}}{1}$	$\frac{2\ell+2\tau_{\rm h}}{1-2\ell+2\tau_{\rm h}}$	Selection	
largeted ttH decays	$t \rightarrow b\ell \nu, t \rightarrow bqq,$	$t \rightarrow D\ell\nu, t \rightarrow D\ell\nu,$	Targeted tiH decays	t ightarrow
	$H \rightarrow \tau \tau \rightarrow \tau_h \tau_h + \nu' s$	$\Pi \to \iota \iota \to \iota_h \iota_h + \nu s$	largeted till decays	Η –
Trigger	Single-lepton	Single-, double-lepton triggers		$t \rightarrow$
	or lepton+ τ_h triggers			$H \rightarrow Z$
Lepton multiplicity	Exactly 1 lepton	\geq 2 leptons	Trigger	Single-, do
Lepton $p_{\rm T}$	$p_{\rm T} > 25$ (e) or 20 GeV (μ)	$p_{\rm T} > 25 / 15$ (e) or 10 GeV (μ)	inggei	
Lepton η	$ \eta < 2.1$	$ \eta < 2.5$ (e) or 2.4 (μ)	Lepton multiplicity	2
$\tau_{\rm h}$ multiplicity	$\geq 2 \tau_{\rm h}$ (m	nedium WP)	Lepton $p_{\rm T}$	$p_{\rm T} > 25$
$\tau_{\rm h} p_{\rm T}$	$p_{\rm T} > 30 / 20 {\rm GeV}$	$p_{\rm T} > 20 {\rm GeV}$	Lepton η	$ \eta <$
$u_{\rm h} \eta$	$ \eta < 2.5$ $\sum q = 0$	$ \eta < 2.5$ $\sum a = 0$	Charge requirement	S
Charge requirements	$\sum_{\tau_{\rm h}} q = 0$	$\sum_{\ell, au_{ m h}} q = 0$	Jet multiplicity	
Jet multiplicity	\geq 3 jets	\geq 2 jets	b tagging requireme	ents ≥ 1 tight b-ta
b tagging requirements	≥ 1 tight b-tagged jet	or \geq 2 loose b-tagged jets	Missing transverse	
Missing transverse	_	No requirement if $N_i \ge 4$	momentum	
momentum		$\hat{L}_{\rm D} > 45 {\rm GeV}^{+}$	Dilepton mass	$m_{\ell\ell}$ 2
	_	$L_{\rm D} > 30 {\rm GeV}$ otherwise		$ m_{\ell\ell} $ –
Dilepton mass	$m_{\ell\ell} >$	12 GeV *	Four-lepton mass	m ₄₀
Applied on all pairs of lept	ons that pass loose selection.		⁺ If the event contains a same-fl	s mai pass 100se se avor opposite-sign
** If both leptons are electron	IS.		[‡] Applied to all SEOS lepton pa	ire

If the event contains a same-flavor opposite-sign lepton pair and $N_j \leq 3$.

CMS PAS HIG-18-019

 $3\ell + 1\tau_h$

ted tīH dec	ays t-	$\rightarrow d\ell \nu, t \rightarrow d\ell \nu, \rightarrow WW \rightarrow \ell \nu a a$	$t \to b \ell \nu, t \to b \ell \nu,$
	t -	$\rightarrow b\ell\nu, t \rightarrow bqq,$	$H \rightarrow \tau \tau \rightarrow \ell \tau_{\rm b} + \nu'_{\rm s}$
	Н	$\rightarrow WW \rightarrow \ell \nu \ell \nu$	
er		Single-, double- or	triple-lepton triggers
n multiplic	ity	Exactly	3 leptons
n p _T	$p_{\rm T}$ >	• 25 / 15 / 15 GeV	$p_{\rm T} > 20 / 10 / 10 {\rm Ge}$
n η	N	$ \eta < 2.5$	(e) or 2.4 (μ) $> 1 \tau$ (loose WP)
	1	—	$p_{\rm T} > 20 {\rm GeV}$
		_	$ \eta < 2.3$
e requirem	lents	$\sum_{q} q = \pm 1$	$\sum_{q=0}^{\infty} q = 0$
, i ultiplicity		l >)	2 jets
ging require	ements	≥ 1 tight b-tagged jet of	or ≥ 2 loose b-tagged jets
ng transver	se	No require	ment if $N_i \ge 4$
entum		$L_{\rm D} >$	45 GeV ⁺ ,
		$L_{\rm D} > 30 {\rm G}$	eV otherwise
ton mass		$m_{\ell\ell} > 12 \mathrm{GeV}^*$ and	$ m_{\ell\ell} - m_Z > 10 \mathrm{GeV}^{\ddagger}$
lepton mass	s m	$t_{4\ell} > 140 \text{GeV}^{\$}$	_
Select	ion	4ℓ	
Target	ted tH decays	$t ightarrow b \ell u$, $t -$	$ ightarrow b\ell u$,
larger	led till decays	$\mathrm{H} ightarrow \mathrm{WW}$ –	$\rightarrow \ell \nu \ell \nu$
		$t \rightarrow b\ell \nu, t -$	$\rightarrow b\ell \nu$,
		$H \rightarrow ZZ \rightarrow \ell \ell q$	q or $\ell\ell\nu\nu$
T .:		Single-, double- or	triple-lepton
Irigge	er	trigger	5
Lepto	n multiplicity	\geq 4 lepto	ons
Lepto	n p _T	$p_{\rm T} > 25 / 15 / 1$	5 / 10 GeV
Lepto	n 1/	$ \eta < 2.5$ (e) o	r 2.4 (µ)
Charg	e requirements		
Jet mu	altiplicity	\geq 2 jets	5
b tagg	ging requirements	\geq 1 tight b-tagged jet	or ≥ 2 loose b-tagged jets
Missir	ng transverse		
mome	entum		
5.1		$m_{\ell\ell} > 12 \mathrm{GeV}$	V^* and
Dilept	ton mass	$ m_{\ell\ell} - m_{Z} > 1$	10 GeV ‡
Four-l	lepton mass	$m_{4\ell} > 1400$	GeV [§]
ied on all p	pairs of leptons that	t pass loose selection.	
event con	tains a same-flavor	opposite-sign (SFOS)	lepton pair and $N_{\rm i} \leq 3$.

Applied to all SFOS lepton pairs.

[§] Applied only if the event contains 2 SFOS lepton pairs.

Higgs Hunting 2019

Marco Peruzzi (CERN)

ttH leptonic

Category	$1\ell + 2\tau_h$	$2\ell ss + 1\tau_h$	$2\ell + 2\tau_h$	$3\ell + 1\tau_h$	2	lss		3ℓ
					tī	tīV	tī	tīV
Leading ℓ cone $p_{\rm T}$	Х		Х	Х		Х		X
Trailing ℓ cone p_{T}		X		X		X		X
Minimum of $\Delta R(\text{leading } \ell, j)$	X	X	X	X	X	X	X	X
Minimum of $\Delta R(\text{trailing } \ell, j)$		X			X	X	X	X
ΔR (leading ℓ , trailing ℓ		X		X				
Transverse Mass of leading ℓ	X	X			X	X	X	X
Transverse Mass of trailing ℓ		X						
Maximum $ \eta $ of ℓ collection		X		X	X	X	X	X
Signal leading $\ell imes$ signal trailing ℓ			X					
Average of $\Delta R(jj)$	Х	Х	Х					
Number of jets ($p_{\rm T} > 25$ GeV)		X		X	X	X	X	x
Number of loose b-jets	Х		X					
Mass of leading medium b-jet pair		X						
Mass of leading loose b-jet pair				Х				
E_T^{miss}	х	X		Х				
res-hTT	Х	X						
Hadronic t $p_{\rm T}$	X	X						
\mathcal{D}_{thad}^{max}					x			
$\mathcal{D}_{\mathrm{Hi}}^{\mathrm{max}}$						X		
Leading $\tau_{\rm h} p_{\rm T}$	X	X	Х	Х				
Trailing $\tau_{\rm h} p_{\rm T}$	X		X					
Mass of leading $\tau_{\rm h}$ + trailing $\tau_{\rm h}$	X		X					
ΔR (leading τ_h , trailing τ_h)	X		X					
$cos(\theta)^*$ (leading τ_h , trailing τ_h)	X		X					
Minimum of ΔR (leading τ_{h} , <i>j</i>)	X	X		Х				
Minimum of $\Delta R(\text{trailing } \tau_{\text{h}}, j)$	X							
Minimum of $\Delta R(\tau_{\rm h}, j)$			X					
Mass of leading ℓ + leading $\tau_{\rm h}$				X				
Mass of trailing ℓ + leading $\tau_{\rm h}$		X		X				
ΔR (leading ℓ , leading $\tau_{\rm h}$)	X	X						
$\Delta R(\text{trailing } \ell, \text{leading } \tau_h)$		X						
$\Delta R(\ell, \tau_h)$ for same-sign pair of (ℓ, τ_h)	X							
Average of $\Delta R(\ell, \tau_h)$			X					
MEM							X	X
Number of variables	17	18	13	12	6	8	6	8

CMS PAS HIG-18-019

Input variables of kinematic discriminants used for signal extraction

ttH leptonic

CMS PAS HIG-18-019

	Signal Strength $\pm 1\sigma$			
Category	Measured	Expected		
$1\ell + 2\tau_h$	$1.40^{+1.24}_{-1.14}$	$1.00^{+1.14}_{-0.93}$		
$2\ell ss$	$0.87\substack{+0.62 \\ -0.55}$	$1.00\substack{+0.53 \\ -0.49}$		
$2\ell ss + 1\tau_h$	$1.13\substack{+1.03 \\ -1.11}$	$1.00\substack{+0.93 \\ -0.80}$		
$2\ell + 2 au_{ m h}$	$0.00^{+1.29}_{-0.00}$ *	$1.00^{+2.63}_{-1.56}$		
3ℓ	$0.29\substack{+0.82 \\ -0.62}$	$1.00\substack{+0.59 \\ -0.52}$		
$3\ell + 1\tau_h$	$-0.96\substack{+1.96\\-1.33}$	$1.00\substack{+1.91 \\ -1.37}$		
4ℓ	$0.99\substack{+3.31 \\ -1.69}$	$1.00\substack{+2.41 \\ -1.72}$		
Combined	$0.75\substack{+0.46 \\ -0.43}$	$1.00\substack{+0.39 \\ -0.35}$		
Combined with 2016 analysis	$0.96\substack{+0.34\\-0.31}$	$1.00\substack{+0.30 \\ -0.27}$		

Source	Uncertainty [%]	$\Delta \mu / \mu$ [%] (2017)	$\Delta\mu/\mu$ [%] (Comb.)	Correlations
Theoretical sources	≈ 8	8	9	Correlated
e, μ selection efficiency	3–5	4	3	Correlated
$\tau_{\rm h}$ selection efficiency	5	3	5	Correlated
$\tau_{\rm h}$ energy calibration	1.2	1	2	Correlated
b tagging efficiency	2–15 [48]	10	5	Correlated
Jet energy calibration	2–15 [56]	3	3	Correlated
Fake background yield	$\approx 30-50$	17	9	Un-correlated

	Observed limit	Expected limit	Expected limit
		$(\mu = 0)$	(<i>µ</i> = 1)
$1\ell + 2\tau_h$	3.8	$2.4^{+1.3}_{-0.8}$	3.3
$2\ell ss$	2.0	$1.1\substack{+0.5 \\ -0.3}$	1.9
$2\ell ss + 1\tau_h$	3.1	$2.1^{+1.0}_{-0.7}$	2.8
$2\ell + 2 au_{ m h}$	5.2	$5.8^{+3.4}_{-2.0}$	6.8
3ℓ	1.7	$1.2\substack{+0.6 \\ -0.4}$	2.1
$3\ell + 1 au_{h}$	3.8	$4.6^{+2.7}_{-1.6}$	5.1
4ℓ	8.1	$6.2^{+3.6}_{-2.1}$	6.4
Combined	1.6	$0.8\substack{+0.3\\-0.2}$	1.7
Combined with 2016 analysis	1.6	$0.6^{+0.2}_{-0.2}$	1.5

Additional results and summary of systematic uncertainties