

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

ATLAS results on ttH

Margherita Spalla (*) on behalf of the ATLAS Collaboration

(*) Max Planck Institut für Physik, München

ttH production channel

O Direct test of top-Higgs coupling

- of particular interest, as t is the heaviest SM particle
- Itop-Higgs coupling could be very sensitive of the standard Model (BSM)
- Indirect measurements from combined fit to multiple H measurements
 - assume no BSM contribution to the loop

Η

ttH observation by ATLAS

O ATLAS ttH observation paper came in 2018

- From combination of analysis in multiple decay channels
 - » Phys. Lett. B 784 (2018) 173 (more details later on)

O Clean final state

- Overy similar analysis strategy for 79.8 fb⁻¹ and full Run 2 analysis
- © Event reconstruction:
 - Higgs: 2 well reconstructed, isolated $\gamma,~M_{\gamma\gamma}$ between 105 and 160 GeV
 - All tt decays considered
 - » Two signal regions for (semi)leptonic ('Lep') and hadronic ('Had') events

Plots from: ATLAS-CONF-2019-004

- Additional selection via **Boosted Decision Trees** (BDT)
 - One per signal region
 - Inputs: γ , jet and lepton kinematics, $E_T^{miss(*)}$, btagging
- Minimum BDT score required.
 - Selected events divided in BDT bins
 - Chosen to optimize expected ttH sensitivity
- Signal and background modeled with analytical functions in each category

(\bigstar) E_{T}^{miss} = missing transverse momentum 30/07/19

Fraction of Events

From: Phys. Lett. B 784 (2018) 173

ttH($H \rightarrow \gamma \gamma$): 79.8 fb⁻¹ results

- Maximum Likelihood fit to $\gamma\gamma$ invariant mass spectrum in each category
 - H mass constrained
- \odot Observed significance: 4.1 σ
 - Expected: 3.7 σ

< 1.77 at 68% CL

2

 $1.32 \pm 0.28 \ (\pm 0.18 \ , \pm 0.21 \)$

4 $\sigma_{ttH} / \sigma_{ttH}^{SM}$

$$\sigma_{\rm ttH} = 710 {}^{+210}_{-190}({\rm stat.}) {}^{+120}_{-90}({\rm syst.}) {\rm ~fb}$$

$$\frac{\sigma_{\rm ttH}}{\sigma_{\rm ttH}^{\rm SM}} = 1.39 \ \pm^{0.42}_{0.38} \ (\text{Stat.}) \ \pm^{0.23}_{0.17} \ (\text{Syst.})$$

30/07/19

M. Spalla - Higgs Hunting 2019

tťH (yy)

ttH (ZZ)

Combined

n

±

From: ATLAS-CONF-2019-004

ttH($H \rightarrow \gamma \gamma$): 139 fb⁻¹ results

(ATLAS-CONF-2019-025) $ttH(H \rightarrow ZZ^* \rightarrow 4\ell)$

- Two opposite-charge, sameflavor lepton pairs in the Higgs mass window
- Two categories for ttH production mode
 - 'Lep': at least one leptonically 1*j - p*^{4I}-BSM-Like decaying W (from t)
 - 'Had': fully hadronic tt decay VH-Lep-enriched
 - More categories as part of larger $H \rightarrow ZZ^* \rightarrow 4\ell$ analysis
- Further NN selection on 'Had' category
 - Combination of • multiple NN in a final discriminant

1j-p_+4l-Med

2j 2j-BSM-Like

ttH+tH

M. Spalla - Higgs Hunting 2019

From: ATLAS-CONF-2019-025

$ttH(H \rightarrow ZZ^* \rightarrow 4\ell)$: 139 fb⁻¹ results

Global likelihood fit on NN output

- Event yield used for (semi)leptonic ttH
- ttZ/ttW/tWZ background constrained from control region
 - similar selection to ttH
 - » cut on number of jets and b-tagged jets
 - missing transverse momentum
 - M_{4ℓ} sidebands
- ◎ No disagreement with SM
 - Statistics is however too low for conclusions

 $\sigma_{\text{ttH}} \times B_{ZZ^* \to 4\ell} = 19 {}^{+22}_{-13} (\text{stat.}) \pm 2 (\text{exp.}) \pm 2 (\text{theo.}) \text{ fb}$

 $\sigma_{\rm ttH} \times B_{ZZ^* \to 4\ell} \ (SM) = 15.4 {+1.0 \atop -1.4} {
m fb}$

Reconstructed event category	Total expected events	Observed events
ttH-Had-enriched	1.32 ± 0.17	1
ttH-Lep-enriched	0.42 ± 0.04	1

ttH (H to multilepton) 36.2 Fb-2

- 7 final states:
 - H decaying to light leptons (e or μ) or hadronically decaying
 - Sensitive to multiple ttH decay modes:
 - $\gg H \rightarrow \tau \tau$
 - » H→WW*
 - $H \rightarrow ZZ^* \rightarrow \ell \ell \nu \nu / \ell \ell q q$
- O Built to be orthogonal to
 - » $H \rightarrow ZZ^* \rightarrow 4\ell$,
 - \rightarrow H \rightarrow bb,
 - $\gg H \rightarrow \gamma \gamma$
 - Overlap found to be negligible

Lint = 36.1 fb-1 ttH (H to multilepton) (2)

- Additional event selection on each final state
 - BDTs used for most of them •
- Combined likelihood fit on all final states (*)
- \odot Significance: 4.1 σ Expected: 2.8 σ
- Signal modelling uncertainty has the largest impact

 $\sigma_{\rm ttH} = 790 \pm 150 ({\rm stat.}) {}^{+170}_{-150} ({\rm syst.}) {\rm ~fb}$

2_ℓSS

-2

combined

2

|tīĤ

tτZ

4 Z-enr.

+0.7

8

Best-fit μ_{HH} for m_{H} =125 GeV

6

/ +0.4

-0.3

12

4 2-dep. 18+2Th

HIT IS OUT / OSM

(It parameter)

11

Other

Uncertainty

l Non-prompt

M. Spalla - Higgs Hunting 2019

30/07/19

ttH (H→bb)

- One or two leptons from tt decay
 - Single lepton channel: a boosted final state is also considered
- Further categorized according to number of jets and jets' b-tagging score
 - no categories for the boosted
- BDT to disentangle ttH
 - Each category treated separately
 - Combines intermediate multivariate techniques to improve signal separation

ttH (H→bb) (2)

- O BDT output is the fit variable
 - » fit variable for control region: overall event yield or scalar sum jets $p_{\rm T}$
- Results compatible with SM
 - Significance: 1.4 σ
 - » Expected: 1.6 σ

 $\sigma_{\rm ttH} = 400 \, {}^{+150}_{-140}({\rm stat.}) \, \pm \, 270({\rm syst.}) \, {\rm fb}$

- Subject and the second seco
 - modeling of tt + heavy flavor background

Lint = 36.1 fb-1

M. Spalla - Higgs Hunting 2019

Plots from: Phys. Lett. B 784 (2018) 173

Back to combination

- I3 TeV cross-section from combined ________
 - γγ (79.8 fb⁻¹), ZZ*(4ℓ) (79.8 fb⁻¹), bb (36.1 fb⁻¹), multilepton (36.1 fb⁻¹)
 - significance 5.8 σ
 - » expected 4.9 σ
 - uncertainty: large contribution from modelling
 - » tt + heavy flavor
- Further combination with 8 TeV results
 - Significance raises to 6.3σ (5.1σ expected)
- Measured cross section about 1σ over NLO prediction

 $\sigma_{ttH} = 670 \pm 90 (stat.) {}^{+110}_{-100} (syst.) fb$ $\sigma_{ttH} (SM) = 507 {}^{+35}_{-50} fb (NLO QCD + NLO EW)$

Uncertainty source	$\Delta \sigma_{t\bar{t}H} / \sigma_{t\bar{t}H}$ [%]
Theory uncertainties (modelling)	11.9
$t\bar{t}$ + heavy flavour	9.9
$t\bar{t}H$	6.0
Non- $t\bar{t}H$ Higgs boson production modes	1.5
Other background processes	2.2
Experimental uncertainties	9.3
Fake leptons	5.2
Jets, $E_{\rm T}^{\rm miss}$	4.9
Electrons, photons	3.2
Luminosity Section Cro	^{3.0} 3.0
τ -lepton	2.5
Flavour tagging	1.8
MC statistical uncertainties	4.4

Conclusions

- ttH associated production observed in 2018
 - From combination of multiple channels
- Sull run 2 measurement in H→γγ channel reaches 4.9σ
- $\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
- Measured cross section agrees with the SM within 1 standard deviation
 - prediction at NLO (both QCD and electroweak)
- Modeling uncertainties contribute significantly to the total systematics
- O Entire run 2 dataset yet to be fully exploited
- ◎ ATLAS effort on ttH not over: stay tuned for more!

Uncertainties in $ttH(H \rightarrow \gamma \gamma)$ cross section fit $L_{int} = 139 \ fb^{-1}$

(ATLAS-CONF-2019-004)

Uncertainty source	$\Delta\sigma_{\rm low}/\sigma~[\%]$	$\Delta \sigma_{ m high} / \sigma$ [%]
Theory uncertainties	6.6	9.7
Underlying Event and Parton Shower (UEPS)	5.0	7.2
Modeling of Heavy Flavor Jets in non- $t\bar{t}H$ Processes	4.0	3.4
Higher-Order QCD Terms (QCD)	3.3	4.7
Parton Distribution Function and α_S Scale (PDF+ α_S)	0.3	0.5
Non- $t\bar{t}H$ Cross Section and Branching Ratio to $\gamma\gamma$ (BR)	0.4	0.3
Experimental uncertainties	7.8	9.1
Photon Energy Resolution (PER)	5.5	6.2
Photon Energy Scale (PES)	2.8	2.7
$ m Jet/E_T^{miss}$	2.3	2.7
Photon Efficiency	1.9	2.7
Background Modeling	2.1	2.0
Flavor Tagging	0.9	1.1
Leptons	0.4	0.6
Pileup	1.0	1.5
Luminosity and Trigger	1.6	2.3
Higgs Boson Mass	1.6	1.5

From: ATLAS-CONF-2019-025

ttH($H \rightarrow ZZ^* \rightarrow 4\ell$) with 139 fb⁻¹: category definition

- **ttH leptonic**: at least 1 lepton + minimum number of jets and b-jets
- **ttH hadronic**: minimum number of jets and b-jets (no leptons)
- tXX: minimum number of jets and b-jets + MET + sideband

M. Spalla - Higgs Hunting 2019

ttH($H \rightarrow ZZ^* \rightarrow 4\ell$) with 139 fb⁻¹: systematic uncertainty

Experimental uncertainties [%]			Theory uncertainties [%]							
Measurement	Lum.	$e,\mu,$	Jets, flavour	Reducible	ZZ^*	tXX			Signal	
		pile-up	tagging	backgr.	backgr	backgr.	PDF	QCD scale	Parton Shower	Composition
				Fidu	icial cross	section				
$\sigma_{ m comb}$	1.7	2.5	_	< 0.5	1	< 0.5	< 0.5	2	1	< 0.5
			Pe	r decay final	state fidu	icial cross	sections			
4μ	1.7	2.5	—	0.5	1	< 0.5	< 0.5	2	1	< 0.5
4e	1.7	7	—	0.5	1.5	< 0.5	< 0.5	2	0.5	< 0.5
$2\mu 2e$	1.7	5.5	—	0.5	1	< 0.5	< 0.5	2	1.5	< 0.5
$2e2\mu$	1.7	2.0	_	0.5	1	< 0.5	< 0.5	2	1	< 0.5
Stage-0 production bin cross sections										
ggF	1.7	1.5	1	0.5	1.5	< 0.5	0.5	1	2	_
VBF	1.7	1	4.5	0.5	2	0.5	1.5	8	6	—
VH	1.8	1.5	3.5	1	5	0.5	2	12	8	
ttH	1.7	1	4.5	1	1	0.5	0.5	8	4	_

From: Phys. Lett. B 784 (2018) 173

$ttH(H \rightarrow ZZ^* \rightarrow 4\ell)$: 79.8 fb⁻¹

- O Two opposite-charge, sameflavor lepton pairs in the Higgs mass window
- Two categories for tt decay
 - 'Lep': at least one • leptonically decaying W
 - 'Had': fully hadronic
- Further BDT selection on 'Had' category
 - split in two BDT bins
- No events observed
 - Expected significance: 1.2σ

 $\sigma_{\rm ttH} < 900 {\rm ~fb} {\rm ~(68\% {\rm ~CL})}$

M. Spalla - Higgs Hunting 2019

Uncertainties breakdown in ttH(H→multilepton) fit

From: Phys. Rev. D 97, 072003

Uncertainty Source	$\Delta \mu$		$\mu = \sigma_{ttH} / \sigma_{ttH}^{SM}$
$t\bar{t}H$ modeling (cross section)	+0.20	-0.09	
Jet energy scale and resolution	+0.18	-0.15	
Non-prompt light-lepton estimates	+0.15	-0.13	
Jet flavor tagging and τ_{had} identification	+0.11	-0.09	
$t\bar{t}W ext{ modeling}$	+0.10	-0.09	
$t\bar{t}Z$ modeling	+0.08	-0.07	
Other background modeling	+0.08	-0.07	
Luminosity	+0.08	-0.06	
$t\bar{t}H$ modeling (acceptance)	+0.08	-0.04	
Fake τ_{had} estimates	+0.07	-0.07	
Other experimental uncertainties	+0.05	-0.04	
Simulation sample size	+0.04	-0.04	
Charge misassignment	+0.01	-0.01	
Total systematic uncertainty	+0.39	-0.30	

Uncertainties breakdown in ttH(H→bb) fit

From: Phys. Rev. D 97, 072016

Uncertainty source	$\Delta \mu$		
$t\bar{t} + \geq 1b \mod$	+0.46	-0.46	
Background-model stat. unc.	+0.29	-0.31	
b-tagging efficiency and mis-tag rates	+0.16	-0.16	
Jet energy scale and resolution	+0.14	-0.14	
$t\bar{t}H ext{ modeling}$	+0.22	-0.05	
$t\bar{t} + \geq 1c \text{ modeling}$	+0.09	-0.11	
JVT, pileup modeling	+0.03	-0.05	
Other background modeling	+0.08	-0.08	
$t\bar{t} + \text{light modeling}$	+0.06	-0.03	
Luminosity	+0.03	-0.02	
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04	
Total systematic uncertainty	+0.57	-0.54	
$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10	
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03	
Intrinsic statistical uncertainty	+0.21	-0.20	
Total statistical uncertainty	+0.29	-0.29	
Total uncertainty	+0.64	-0.61	

 $\mu = \sigma_{ttH} / \sigma^{SM}_{**H}$

Combination fit

2∆ln(L)

From combination paper auxiliary material: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-13</u>

Likelihood curve of the ttH signal-strength combination, including the systematic uncertainties in the SM prediction in the fit.

Signal-strength: $\mu_{ttH} = \sigma_{ttH} / \sigma_{ttH}^{SM}$

Likelihood curve of the ttH cross-section combination. The measured cross section is normalized to the SM prediction, without including the systematic uncertainties in the SM prediction in the fit.

Summary of cross sections from combination paper

Plots from: Phys. Lett. B 784 (2018) 173

Analysis	Integrated	$t\bar{t}H$ cross	Obs.	Exp.
	luminosity $[fb^{-1}]$	section [fb]	sign.	sign.
$H \to \gamma \gamma$	79.8	$710 \ ^{+210}_{-190}$ (stat.) $\ ^{+120}_{-90}$ (syst.)	4.1 σ	3.7σ
$H \rightarrow \text{multilepton}$	36.1	790 ±150 (stat.) $^{+150}_{-140}$ (syst.)	4.1 σ	2.8 σ
$H \to b\bar{b}$	36.1	$400 {}^{+150}_{-140}$ (stat.) ± 270 (syst.)	1.4 σ	1.6 σ
$H \to Z Z^* \to 4\ell$	79.8	< 900 (68% CL)	0σ	1.2 σ
Combined (13 TeV)	36.1 - 79.8	$670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$	5.8σ	$4.9~\sigma$
Combined $(7, 8, 13 \text{ TeV})$	4.5, 20.3, 36.1 - 79.8	—	6.3σ	5.1 σ