Higgs Hunting '19

Measurement of $H \to \gamma \gamma$ Differential Cross Sections and Charm Yukawa Coupling Interpretation with ATLAS

Früd Braren

on behalf of the ATLAS collaboration

29. 7. 2019

Introduction

- Big picture: Study Higgs boson properties match SM predictions?
- ► A way to do this:

Measure Higgs production cross section in fiducial volume

- inclusively
- differentially
- $H \rightarrow \gamma \gamma$ well suited decay channel for this:
 - $\bullet\,$ Good mass resolution \to Robust subtraction of background
 - Good final state selection efficiency
 - But: Rather small S/B
- ▶ Note ATLAS-CONF-2019-029: http://cdsweb.cern.ch/record/2682800

What are differential cross sections sensitive to?

- Focus: $p_{\rm T}^H$:
 - QCD calcluation, especially for $gg \rightarrow H$
 - Low p_T^H : Yukawa couplings to lighter quarks such as *b*, *c*
 - High p_T^H: Couplings to heavy NP particles, m_t treatment
- y^H, p^{j1}_T, Δφ_{jj}, m_{jj}, N_j: PDF, Spin and CP property of Higgs, production mode contributions, ...

- ► Detector has limited acceptance and H → γγ events have certain kinematic features → Design selection criteria accordingly.
- To require minimal extrapolation in correction for detector effects as possible: Make fiducial selection on theory level as similar as possible.
 Measurement almost model-independent

Objects	Fiducial definition
Photons	$ \eta < 2.37 \text{ (excluding } 1.37 < \eta < 1.52), \sum p_{\mathrm{T}}^{i}/p_{\mathrm{T}}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30 \text{ GeV}$, $ y < 4.4$
Diphoton	$N_{\gamma} \ge 2, \ \ 105 GeV < m_{\gamma\gamma} < 160 GeV, \ \ p_{T}^{\gamma_{1}}/m_{\gamma\gamma} > 0.35, \ \ p_{T}^{\gamma_{2}}/m_{\gamma\gamma} > 0.25$

- What needs to be done to measure these cross sections?
 - Object reconstruction, diphoton event selection
 - Signal yield extraction by fit to $m_{\gamma\gamma}$ spectrum
 - Correct signal yield for detector effects to make it comparable to theory prediction

Event with diphoton candidate https://cds.cern.ch/record/1406055?ln=en

Signal Extraction and Unfolding

DESY

- Signal extraction with Maximum-Likelihood method
 - Simulatenous fit of several regions of phase-space
- Correction for Detector Effects
 - To make measurement comparable with theory predictions:

Correct cross section for detector

resolution and inefficiencies.

- Method used for the presented results:
 - Bin-by-bin unfolding: σ_i = ^νsig / c_i · 1/L, with c_i = ^{N^{det}}/_{N^{btel}} (Only suitable if measurement is dominated by statistical uncertainty and migration between bins is small enough)

Bin-by-bin signal extraction. [Figure

from Florian Bernlochner]

Correction factors. [Phys. Rev. D 98 (2018) 052005]

Result: p_{T}^{H}

- Unfolded p_{T}^{H} spectrum compared to theory predictions
- 5 additional differential distributions measured, shown in presentation of Lailin Xu

- Shape and normalization of the differential Higgs cross section in p_T depend slightly on the Charm Yukawa coupling
 - ightarrow Measured $p_{
 m T}$ spectrum can be used to extract limits on $\kappa_c = y_c/y_c^{
 m SM}$
- ▶ Which Higgs production modes depend on κ_c ?
 - $gg \to H$
 - $c\bar{c} \rightarrow H$

▶ $gg \rightarrow H$ dependence on κ_c from NNLO RadISH, $c\bar{c} \rightarrow H$ from MG5_NLO

• $gg \rightarrow H$

- Largest change in from top-loop interference with charm-loop
- Can be positive or negative
- $c\bar{c} \rightarrow H$
 - Cross section simply scaled
 by κ²_c in each bin
 - Has stronger contribution to sensitivity

 \blacktriangleright Shape-only fit \rightarrow reduce model-dependence (Normalization depends on

NP modifications to Higgs decay width)

Measurement statistically limited

Coefficient	Observed 95% CL limit	Expected 95% CL limit
κ_c	[-19, 24]	[-15, 19]

- ► Measurement of inclusive and differential cross sections performed on full Run-2 dataset in $H \rightarrow \gamma \gamma$ decay channel
- Measured Higgs differential distributions agree very well with SM prediction
- ▶ $p_{\rm T}$ spectrum can be used to extract limits on κ_c

 $ightarrow \kappa_c \in$ [-19, 24] @ 95 % CL

The end

This project has received funding from the European Union's Horizon 2020 research and

innovation programme under grant agreement no. 678215.

Combined Run-2 dataset

 $(139 \, \text{fb}^{-1}, \sqrt{s} = 13 \, \text{TeV})$

 Diphoton trigger: ID, isolation cuts on photon candidates

[https://twiki.cern.ch/twiki/bin/ view/AtlasPublic/ LuminosityPublicResultsRun2]

▶ MC used to model signal peak in $m_{\gamma\gamma}$ and to correct for detector effects

- ▶ Gluon fusion (ggF): POWHEG NNLOPS, normalized to N³LO (QCD)
- ▶ VBF, VH, ttH, bbH: POWHEG-BOX, normalized to (approx.) NNLO or NLO
- For each: PDF4LHC15 PDF set

Signal and Background Parametrization

Signal:

▶ Width of signal peak essentially determined by detector resolution → Double-sided Crystal Ball function:

Gaussian core and power-law tails

Background:

- Non-resonant, falling QCD background to Higgs peak (γγ, γj, jj)
- Irreducible γγ (75%) and reducible γj
 (22%) + jj (3%)

 $(\geq 1$ jets falsely identified as photon)

 BG shape described by empirically chosen function:

Smallest number of free parameters with sufficienctly small bias in signal extraction

Diphoton mass spectrum for the fiducial event selection in data

- ▶ Fitted to simulation with $m_H = 125 \, \text{GeV}$ for each phase-space region corresponding to bin in differential distribution
- ► In fit to $m_{\gamma\gamma}$ spectrum m_H is fixed, but uncertainty on m_H of 0.24 GeV enters as nuisance parameters

- Signal extraction with Maximum-Likelihood method, assuming Poisson distribution of number of events per bin
- Compute Likelihood for each bin of differential distribution and maximize simultaneously
- ► For every bin compute: $\mathcal{L} = \frac{e^{-\nu}}{n!} \prod_{i}^{n} [\nu_{\text{sig}} \cdot S(m_{\gamma\gamma}^{i}|\theta_{k}) + \nu_{\text{bkg}} \cdot \mathcal{B}(m_{\gamma\gamma}^{i})] \cdot \prod_{k} G(\theta_{k}|0, 1)$ With: $\nu = \nu_{\text{sig}} + \nu_{\text{bkg}}$, n: Number of events, S: Signal distribution, B: Background distribution, θ_{k} : Nuisance parameters distributed with Gaussian $G(\theta_{k}|0, 1)$ in most cases
- Fitted quantities: ν_{sig} , ν_{bkg} , θ_k
- ► Likelihood maximized for all bins of differential distribution simultaneously

- ▶ Unfolded cross section: $\sigma_i = \frac{\nu_{\text{sig}}}{c_i} \cdot \frac{1}{\mathcal{L}}$, with $c_i = \frac{N_i^{\text{det}}}{N_i^{\text{ptcl}}}$
- ▶ N_i^{det} : Number of events reconstructed in bin *i* of differential distribution

> N_i^{ptcl} : Number of events on truth level in bin *i* of differential distribution

▶ Unfolded p_{T}^{H} spectrum compared to theory predictions

Source	Uncertainty (%)
Statistics	6.9
Signal extraction syst.	7.9
Photon energy scale & resolution	4.6
Background modelling (spurious signal)	6.4
Correction factor	2.6
Pile-up modelling	2.0
Photon identification efficiency	1.2
Photon isolation efficiency	1.1
Trigger efficiency	0.5
Theoretical modelling	0.5
Photon energy scale & resolution	0.1
Luminosity	1.7
Total	11.0

LO and NLO Diagrams for ccH process

Source	$\delta \kappa_c \left({}^{+\mathrm{up}}_{-\mathrm{down}} \right)$
Stat.	$^{+10.1}_{-8.2}$
Exp. syst.	$+3.0 \\ -2.7$
QCD scale (ggF)	$^{+5.4}_{-5.4}$
QCD scale $(c\bar{c} \rightarrow H \& b\bar{b} \rightarrow H)$	$^{+0.8}_{-0.4}$
PDF (ggF)	$^{+0.5}_{-0.5}$
PDF $(c\bar{c} \rightarrow H \& b\bar{b} \rightarrow H)$	$^{+0.3}_{-0.1}$
Parton shower $(c\bar{c} \rightarrow H \& b\bar{b} \rightarrow H)$	$^{+1.4}_{-0.7}$
Total	$^{+12.1}_{-10.3}$

- ▶ $gg \rightarrow H$ prediction relies on top-bottom interference for gluon fusion loop, which is theoretically not well understodd
- It is assumed that gluon fusion acceptance for fiducial region is not depending on κ_c
- > All other quark Yukawa couplings are set to SM value

 \blacktriangleright Both CMS and ATLAS have a $H \rightarrow c \bar{c}$ measurement based on the

pp
ightarrow ZH production mode, based on 36 ${
m fb}^{-1}$

- ► Assuming SM value for Z-H coupling:
 - CMS: $|\kappa_c| < 8.4 \text{ (https://cds.cern.ch/record/2682638)}$
 - ATLAS: $|\kappa_c| < 10.5 \text{ (https://cds.cern.ch/record/2304413/)}$