CMS H(125) fermionic decay results

Mareike Meyer (DESY) on behalf of the CMS collaboration

Higgs Hunting 2019, Orsay-Paris, 29/07/2019

Introduction

precise measurements of Higgs Yukawa couplings important test of SM

ttH: Marco Peruzzi on Tuesday HL-LHC prospects: Elisa Fontanesi on Tuesday $H \rightarrow c\bar{c}$: Loukas Gouskos on Wednesday

41.3 fb⁻¹ (2017 data)

$\textbf{H} \rightarrow \textbf{b} \textbf{b}$ in WH & ZH production

41.3 fb⁻¹ (2017 data)

channels:

- Z $(\rightarrow vv)$ H $(\rightarrow b\bar{b})$
- W (\rightarrow ev / μ v) H (\rightarrow bb)
- Z (\rightarrow ee / $\mu\mu$) H (\rightarrow bb)

improvements:

- more efficient b jet identification
- better dijet mass resolution
- better signal and background separation due to improved machine learning techniques

signal extraction:

- deep neural network (DNN) discriminant in signal regions
- control regions for
 - tł & W/Z + light-flavor jets (yields)
 - W/Z + heavy-flavor jets (shape of b tagging / DNN discriminant)

$H \rightarrow b\bar{b}$: combination

Phys. Rev. Lett. 121 (2018) 121801

2017 + 2016 + Run I data:

- best-fit signal strength : µ = 1.01 ± 0.22
- obs. (exp.) significance of 4.8 σ (4.9 σ)

combination with analyses targeting ggF, VBF & ttH production modes:

- best-fit signal strength : µ = 1.04 ± 0.20
- obs. (exp.) significance of **5.6** σ (5.5 σ)
- ➡ observation of H → bb̄ by CMS

$\leq 5.1 \text{ fb}^{-1} (7 \text{ TeV}) + \leq 19.8 \text{ fb}^{-1} (8 \text{ TeV}) + \leq 77.2 \text{ fb}^{-1} (13 \text{ TeV})$

H \rightarrow ττ in ggF & VBF production 77.4 fb⁻¹ (2016 + 2017 data)

CMS PAS HIG-18-032 NEW!

analysis strategy:

• channels: $e\mu / e\tau_h / \mu\tau_h / \tau_h\tau_h$

(1) input variable selection and validation (based on 1D and 2D goodness-of-fit tests)
(2) multi-class neural nets → two signal classes & several background classes
(3) cut-based splitting in stage-1 simplified template cross section categories

~ 90 % of total background estimated from data

\tau-embedding: real taus (mainly Z $\rightarrow \tau\tau$)

CMS PAS HIG-18-032 NEW!

eµ : QCD from SS region

~ 90 % of total background estimated from data

fake factor method: jet $\rightarrow \tau_h$

high purity background categories serve as control regions

$H \rightarrow \tau \tau$ in ggF & VBF production Signal categories

- increasing purity within category from low to high NN output
- additional signal and background separation

CMS PAS HIG-18-032

NEW!

CMS

77.4 fb⁻¹ (13 TeV)

CMS PAS HIG-18-032

NEW!

best-fit signal strength $\mu = 0.75^{+0.18}$ -0.17

cross section measurements split by production modes & different kinematic regimes

inclusive measurement:

•

- presented as stage-1.0 simplified template cross sections, as defined by LHC Higgs Cross Section Working Group
- few categories merged due to low sensitivity

Observation

$H \rightarrow \tau \tau$ in WH & ZH production 35.9 fb⁻¹ (2016 data)

channels:

- W (\rightarrow ev / μ v) H (\rightarrow $\tau\tau \rightarrow \mu\tau_h$ / e τ_h / $\tau_h\tau_h$), except for W (\rightarrow ev) H (\rightarrow $\tau\tau \rightarrow$ eth)
- Z (\rightarrow ee / $\mu\mu$) H (\rightarrow $\tau\tau \rightarrow$ e τ_h / $\mu\tau_h$ / e μ / $\tau_h\tau_h$)

reconstruction of Higgs candidate

- m_{vis} in WH: sub-leading light lepton, $\tau_h / \tau_h \tau_h$
- $m_{\tau\tau}$ in ZH: leptons not assigned to Z boson candidate ٠
- reconstructed masses used for extraction of results

background estimation:

- background with jet misidentified as $e/\mu/\tau_h$ from data
- di- & tri-boson production, ttV, $H \rightarrow VV$ & ttH from simulation

$H\to\tau\tau$: ggF, VBF, VH combination

WH / ZH alone:

- best-fit signal strength : µ = 2.5^{+1.4}-1.3
- obs. (exp.) significance of 2.3 σ (1.0 σ)

combination with ggF & VBF analysis (2016 data only, Phys. Lett. B 779 (2018) 283):

- re-weighting of p_T^H in ggF to spectrum from NNLOPS generator, updated ggF cross section uncertainty
- obs. (exp.) significance of 5.5 σ (4.8 σ)

observation level reached with 2016 data alone

arXiv:1809.03590.

accepted by JHEP

$\begin{array}{l} H \longrightarrow \mu \mu \\ \text{35.9 fb}^{\text{-1}} \text{ (2016 data)} \end{array}$

Phys. Rev. Lett. 122 (2019) 021801

combined 2016 data + Run I results (at m_H = 125.09 GeV) :

- upper limit on σ/σ_{SM} : 2.9 (2.2) obs. (exp. for $\mu = 0$) at 95% C.L.
- best fit signal strength µ of 1.0 ± 1.0 (stat) ± 0.1 (syst)
- obs. (exp.) significance of 0.9 σ (1.0 σ)

Summary

after discovery of Higgs decays into 3rd generation fermions

- focus on measurements of properties of Higgs bosons couplings to 3rd generation fermions
- observation of $H \rightarrow b\bar{b}$ by CMS
- first measurement based on simplified template cross sections in $\textbf{H} \rightarrow \tau \tau$

next steps in establishment of coupling to 2nd generation fermions:

- H → µµ: no significant excess seen, but remarkable sensitivity achieved already in middle of Run II
- H → cc
 : see talk by Loukas Gouskos on Wednesday

Thank you for your attention!

124 125 126

120

121

122

123

130

129

m_н [GeV]

127 128

Boosted $H \rightarrow b\bar{b}$

35.9 fb⁻¹ (2016 data)

signature:

 high p_T AK8 jet (p_T > 450 GeV) that has two-prong substructure and is double-b tagged

trigger:

 requirements on total hadronic transverse energy or jet p_T & trimmed jet mass

event categorization

six p_T categories from 450 GeV to 1 TeV

background estimation:

- data-driven estimation of QCD multijet background by inverting the b tagging requirement
- tt control region

simultaneous fit of jet mass (soft-drop grooming) in all categories (passing and failing) in mass range from 40 GeV to 201 GeV & tt CR

validation of analysis strategy with $\textbf{Z} \rightarrow b\bar{b}$ decays

Boosted $H \rightarrow b\bar{b}$

35.9 fb⁻¹ (2016 data)

Phys. Rev. Lett. 120 (2018) 071802

Systematic source	W/Z	Н
Integrated luminosity	2.5%	2.5%
Trigger efficiency	4%	4%
Pileup	<1%	<1%
$N_2^{1,\text{DDT}}$ selection efficiency	4.3%	4.3%
Double-b tag	4% (Z)	4%
Jet energy scale / resolution	10/15%	10/15%
Jet mass scale $(p_{\rm T})$	$0.4\%/100 \text{GeV}(p_{\mathrm{T}})$	$0.4\%/100{ m GeV}(p_{ m T})$
Simulation sample size	2–25%	4–20% (ggF)
H $p_{\rm T}$ correction	—	30% (ggF)
NLO QCD corrections	10%	—
NLO EW corrections	15-35%	—
NLO EW W/Z decorrelation	5-15%	—

Phys. Rev. Lett. 120 (2018) 071802

Boosted H \rightarrow **bb**

35.9 fb⁻¹ (2016 data)

	Н	H no $p_{\rm T}$ corr.	Ζ
Observed signal strength	$2.3^{+1.8}_{-1.6}$	$3.2^{+2.2}_{-2.0}$	$0.78\substack{+0.23 \\ -0.19}$
Expected UL signal strength	< 3.3	< 4.1	
Observed UL signal strength	< 5.8	< 7.2	
Expected significance	0.7σ	0.5σ	5.8σ
Observed significance	1.5σ	1.6σ	5.1σ

• first observation of the $Z \rightarrow b\bar{b}$ process in the single-jet topology

JHEP 09 (2018)007

$H \rightarrow \tau \tau$ in ggF & VBF production

$H \rightarrow \tau \tau$ in ggF & VBF production

CMS PAS HIG-18-032 NEW!

		eτ _h (2	ation Preliminary						
	ggH	0.23	0.08	0.07	0.04	0.01	0.03	0.12	0.06
SS	qqH	0.22	0.72	0.07	0.05	0.05	0.11	0.06	0.05
nt cla	ztt	0.20	0.06	0.66	0.18	0.01	0.10	0.08	0.09
d evel	qcd	0.03	0.02	0.03	0.21	0.03	0.10	0.05	0.15
dicted	tt	0.01	0.04	0.02	0.07	0.76	0.26	0.01	0.02
N pre	misc	0.01	0.03	0.04	0.05	0.12	0.21	0.03	0.08
Z	zll	0.22	0.02	0.07	0.14	0.00	0.04	0.55	0.12
	wj	0.07	0.02	0.04	0.26	0.02	0.15	0.10	0.43
		ggH	Hpp	ztt	dcd	tt	misc	zll	wj
				Τrι	le eve	ent cla	ISS		

• columns normalized to 1

example: 72% of true qqH events are also classified as qqH events

good separation of the processes achieved

Simplified Template Cross Sections Stage 1.0

CMS PAS HIG-18-032 NEW!

Simplified Template Cross Sections Stage 1.0

$H \rightarrow \tau \tau$ in ggF & VBF production Correlation matrix

H $\rightarrow \tau \tau$ in WH & ZH production 35.9 fb⁻¹ (2016 data)

arXiv:1809.03590, accepted by JHEP

Source of uncertainty	Magnitude	Process
$\tau_{\rm h}$ ID & isolation	5%	All simulations
$\tau_{\rm h}$ energy [†] (1.2% energy shift)	0.1–1.9%	All simulations
e ID & isolation & trigger	2%	All simulations
e energy [†] (1–2.5% energy shift)	0.3–1.4%	All simulations
μ ID & isolation & trigger	2%	All simulations
b veto	0.15–4.50%	All simulations
Diboson theoretical uncertainty	5%	WZ, ZZ
$gg \rightarrow ZZ$ NLO K factor	10%	$gg \rightarrow ZZ$
$t\bar{t} + W/Z$ theoretical uncertainty	25%	$t\bar{t} + W/Z$
Signal theoretical uncertainty	Up to 4%, see text	Signal
Reducible background uncertainties:		Reducible bkg.
WH statistical error propagation [†]	1–2%	-
WH prompt lepton normalization ⁺	2.6% in e + $\mu \tau_{\rm h} / \mu$ + e $\tau_{\rm h} / 4\%$ in $\mu + \mu \tau_{\rm h}$	
ZH prompt lepton normalization [†]	20% in $\ell\ell + e\mu$, <1% elsewhere	
WH normalization	20%	
ZH normalization	25–100%	
$\vec{p}_{\rm T}^{\rm miss}$ energy [†]	Up to 1.5% in WH, <1% in ZH	All simulations
Limited number of events	Stat. uncertainty per bin	All
Integrated luminosity	2.5%	All simulations

S/(S+B) Weighted Events / 0.5 GeV

Search for $H \to \mu \mu$

35.9 fb⁻¹ (2016 data)

selection strategy:

- 2 oppositely charged muons
- 110 GeV < m_{µµ} < 150 GeV

main backgrounds:

- $Z/\gamma^* \rightarrow \mu\mu$
- leptonic tt decays

event categorization:

- 15 categories based on optimized cuts on BDT output and |ημ|
- exploit better di-muon mass resolution in central detector parts

BDT variables: m_{jj} , $p_T^{\mu\mu}$, $\Delta \eta_{jj}$, $\Delta \eta_{\mu\mu}$...

analytic functions used to describe signal and background distributions

24

Search for $H \to \mu \mu$

35.9 fb⁻¹ (2016 data)

DDT			TIDE	T A 7T T	711		0, 1			D1 ();	0 / <u>7</u>
BDT response	Maximum	ggH	VBF	WH	ZH	ttH	Signal	Bkg/GeV	FWHM	Bkg fit	S/\sqrt{B}
quantile [%]	muon $ \eta $	[%]	[%]	[%]	[%]	[%]		@125 GeV	[GeV]	function	@ FWHM
0-8	$ \eta < 2.4$	4.9	1.3	3.3	6.3	32	21.2	3.13×10^{3}	4.2	mBW $B_{deg 4}$	0.12
8 - 39	$1.9 < \eta < 2.4$	5.6	1.7	3.9	3.5	1.3	22.3	$1.34 imes 10^3$	7.2	mBW B_{deg4}	0.16
8 - 39	$0.9 < \eta < 1.9$	10	2.8	6.5	6.4	5.2	41.1	$2.24 imes 10^3$	4.1	mBW B_{deg4}	0.29
8 - 39	$ \eta < 0.9$	3.2	0.8	1.9	2.1	3.5	12.7	$7.83 imes 10^2$	2.9	mBW B_{deg4}	0.18
39 – 61	$1.9 < \eta < 2.4$	2.9	1.7	2.7	2.7	0.3	11.8	$4.37 imes 10^2$	7.0	mBW B_{deg4}	0.14
39 – 61	$0.9 < \eta < 1.9$	7.2	3.3	6.1	5.2	1.3	29.2	$9.70 imes 10^2$	4.0	mBW B_{deg4}	0.31
39 – 61	$ \eta < 0.9$	3.6	1.1	2.6	2.2	0.9	14.5	$4.81 imes 10^2$	2.8	mBW ຶ	0.26
61 – 76	$1.9 < \eta < 2.4$	1.2	1.5	1.8	1.7	0.2	5.2	$1.48 imes 10^2$	7.6	mBW B_{deg4}	0.11
61 – 76	$0.9 < \eta < 1.9$	4.8	3.6	4.5	4.4	0.7	20.3	$5.12 imes 10^2$	4.2	mBW B_{deg4}	0.29
61 – 76	$ \eta < 0.9$	3.2	1.6	2.3	2.1	0.6	13.1	3.22×10^2	3.0	mBW ຶ	0.28
76 – 91	$1.9 < \eta < 2.4$	1.2	3.1	2.2	2.1	0.2	5.8	$1.04 imes 10^2$	7.1	mBW B_{deg4}	0.14
76 – 91	$0.9 < \eta < 1.9$	4.4	8.7	6.2	6.0	1.1	20.3	$3.60 imes 10^2$	4.2	mBW B_{deg4}	0.35
76 – 91	$ \eta $ < 0.9	3.1	4.0	3.8	3.6	0.9	13.7	$2.36 imes 10^2$	3.2	mBW ຶ	0.34
91 – 95	$ \eta $ < 2.4	1.7	6.4	2.5	2.6	0.5	8.6	96.0	4.0	mBW	0.28
95 – 100	$ \eta $ < 2.4	2.0	19	1.5	1.4	0.7	13.7	83.4	4.1	mBW	0.48
0 - 100	$ \eta $ < 2.4	59	61	51	52	49	253	$1.30 imes 10^4$	3.9		