LHCb Heavy Flavour Results as probes for charged Higgs sector

by *Da Yu Tou* On behalf of the *LHCb* experiment

> Higgs Hunting Workshop 29 July 2019

> > 1

Direct and Indirect Search for New Physics

Intensity Frontier Indirect Search

Flavour physics, precision test of SM

R(D*)-R(D) in General 2 Higgs Doublet Model

R(D) and R(D*)

• SM prediction very clean and precise due cancellation of Cabibbo-Kobayashi-Maskawa matrix element and form factor uncertainties.

$$\mathscr{R}(D^*) = \frac{\mathscr{B}(\bar{B} \to D^{*+} \tau^- \nu_{\tau})}{\mathscr{B}(\bar{B} \to D^{*+} \mu^- \nu_{\mu})} = 0.252 \pm 0.003 \quad \text{[Phys. Rev. D 85, 094025]}$$

• Several New Physics models can cause deviation from SM prediction, e.g. 2HDM.

B-factory Measurements

• Belle and Babar performed compatibility test of Type II 2HDM with measurements of R(D) and $R(D^*)$.

- These compatibility tests model are only valid for $m_{H^+} < 10$ GeV but $m_{H^+} < 10$ GeV has been excluded by $B \to X_s \gamma$. [Phys. Rev. Lett. 98, 022002]
- Type II 2HDM is excluded in the full $\tan\beta/m_{H^+}$ parameter space.

 $R_{D^*}, \tau \to \mu \nu_{\mu} \nu_{\tau}$

[Phys. Rev. Lett. 115, 111803]

- The $D^*\mu^+$ candidates are required to be isolated from the rest of the event using an MVA classifier.
- 3D template fit in m_{miss}^2 , E_{μ}^* and q^2 is performed in 4 q^2 bin to extract the yields of $\bar{B} \to D^{*+} \tau^- \nu$ and $\bar{B} \to D^{*+} \mu^- \nu$.
- The pulls indicates that the templates are a good description of the components in the fit.
- Results :

 $R_{D^*} = 0.336 \pm 0.027(stat) \pm 0.030(syst)$ Consistent to SM at 2.1 σ

 $R_{D^*}, \tau \to \pi^+ \pi^- \pi^+ \nu_\tau$ or $\tau \to \pi^+ \pi^- \pi^+ \pi^0 \nu_\tau$

• Use $B \rightarrow D^{*-}3\pi$ as normalisation channel to cancel systematic uncertainty.

• Measure
$$\frac{\mathscr{B}(\bar{B} \to D^{*+}\tau^{-}\nu)}{\mathscr{B}(\bar{B} \to D^{*+}3\pi)}$$
 from data, compute $R_{D^{*}}$
using known branching fraction measurements of
 $\bar{B} \to D^{*+}3\pi$ and $\bar{B} \to D^{*+}\mu^{-}\nu$.

- The yield of the normalisation mode is measured by fitting the invariant mass $m(D^{*+}\pi^+\pi^-\pi^+)$.
- A 3D template fit in q^2 , t_{τ} and BDT response is used to extract the yields of $\bar{B} \to D^{*+}\tau^-\nu$ (shown right).
- Results:

 $R_{D^*} = 0.291 \pm 0.019(stat) \pm 0.026(syst) \pm 0.013(BR)$ Consistent with SM at 1.1σ

BDT response increases from top to bottom Higgs Hunting Workshop | 29/07/19

[[]Phys. Rev. Lett. 120, 171802]

R_K and R_{K^*} in Type-III 2HDM

$b \rightarrow sll \, {\rm Decays}$

• Flavour changing neutral currents that proceed via electroweak or box diagram.

- Highly suppressed in the SM. Sensitive to new physics contribution enhancement of branching fraction.
- SM predicts muons and electrons branching fraction ratio is close to unity.

$$R_H = \frac{\mathscr{B}(B \to H\mu\mu)}{\mathscr{B} \to Hee}$$

$b \rightarrow sll \text{ Decays}$

[arXiv:1710.05898]

• Type III 2HDM might contribute to this process and cause lepton non-universality in $b \rightarrow sll$ decays.

- Type III 2HDM might contribute to this process and cause lepton non-universality in $b \rightarrow sll$ decays.
- Yellow bands are 1σ experimental results (Run 1 R_K results), while the scatter plots correspond to the expectation of Type III 2HDM.

Higgs Hunting Workshop | 29/07/19

LHCb Measurement of R_K and $R_{K^{*0}}$

• Electron channels suffer from Bremstrahlung radiation. We instead measure a double ratio. J/ψ modes proceeds via tree level in the SM and have branching fraction ratio of 1.

$$R_{H} = \frac{\mathscr{B}(B \to H\mu\mu)}{\mathscr{B}(B \to HJ/\psi \to (\mu\mu))} \Big/ \frac{\mathscr{B}(B \to Hee)}{\mathscr{B}(B \to HJ/\psi \to (ee))}$$

• Systematic uncertainties in efficiency calculations cancel due to similar kinematics between resonant and rare modes.

LHCb Run 1 Measurement of $R_{K^{*0}}$

[JHEP08(2017)055]

- Fit $m(K^+\pi^-l^+l^-)$ after applying selections to extract yields for $B^0 \to K^+\pi^-l^+l^-$ decays in the two $q^2[\text{GeV}^2/\text{c}^4]$ bins, q^2 is the four-momentum squared of the di-lepton system:
 - ▶ $0.045 < q^2 < 1.1$
 - $1.1 < q^2 < 6.0$
- Perform a log-likelihood scan of these fit to extract the value of $R_{K^{*0}}$ using the efficiencies determined from Monte Carlo.

LHCb Run 1 and 15+16 Measurement of R_K

[Phys. Rev. Lett. 122, 191801]

- Fit $m(K^+l^+l^-)$ after applying selections using efficiencies as constraint to directly extract R_K .
- Only fit $1.1 < q^2 < 6.0$ [GeV²/c⁴].

Fits to $m(K^+l^+l^-)$

Results

- $R_{K^{*0}}$ Consistent to SM
- 2.2σ at $q^2 = 0.045 1.1 \ GeV^2/c^4$
- 2.4 σ at $q^2 = 1.1 6 \ GeV^2/c^4$

• R_K Consistent to SM at 2.5σ

Summary

- 2HDM models predict deviation in R_{D^*} and $R_{K^{(*)}}$ measurements.
- LHCb performed precision measurements of SM :
 - $R_{D^*}, \tau \to \mu \bar{\nu_{\mu}} \nu_{\tau} : 2.1\sigma$
 - R_{D^*} , τ three-prong decays : 1.1σ
 - R_K : 2.5 σ
 - R_{K^*} : 2.2 σ at 0.045 < q^2 < 1.1, 2.4 σ at 1.1 < q^2 < 6.0
- LHCb results consistent with the SM so far. Need better sensitivity to constrain SM and NP.

Thank You

Back-Up

Other scenarios in general 2HDM

Type II exclusion of R(D) and $R(D^*)$

Normalisation mode invariant mass

 $q^2 vs m(K^+l^+l^-)$

Figure : Dilepton invariant mass squared (q^2) against $K^+l^+l^-$ invariant mass for selected for $B^+ \rightarrow K^+\mu^+\mu^-$ candidates (left) and $B^+ \rightarrow K^+e^+e^-$ candidates (right). Bremsstrahlung radiation worsens the resolution in the electron mode.

Other Type III $b \rightarrow sll$ Feynman diagrams

