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M. Lévy,
B.W. Lee,
J.-L. Gervais
K. Symanzik

about the Lee - Lévy σ model

(pions are the Goldstone bosons of the partially broken,
spontaneously broken chiral SU(2)L × SU(2)R symmetry):

The model can be renormalized; the renormalised pions are still
Goldstone bosons - but counter terms have to be chosen carefully.

Yet it is all about scalar (spin 0) fields and Dirac (spin 1/2) fields.
Vector (Yang-Mills, spin 1) fields were out of the question.

For renormalisability, a new, unstable hadron, σ, was required.
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Even for these scalar theories (now considered to be simple),
renormalization of two-loop diagrams, and certainly proving
renormalisability at all orders, was considered to be very difficult.

Theories for vector particles seemed to be hopeless.
Infinities generated were not Lorentz invariant (Schwinger terms).

M. Veltman had developed processes to investigate
how Feynman diagrams have to be arranged, and how
infinities have to be regularised so as to examine

unitarity and causality:
insert “ghost particles” to be removed again later.

“Bell - Treiman transformation”: a transformation that looks
like a gauge transformation, involving this ghost field.

4 / 23



Veltman had noticed that the Yang-Mills Lagrangian could be
useful to describe weak interactions. But a mass term for the
vector bosons was needed. This would violate local gauge
invariance, but only “softly”, so he expected that the UV
divergences could be kept under control.

He saw no use for the BEH mechanism,
“that’s for mathematicians”

Here, the insights obtained by Lee, Gervais, and Symanzik should
be helpful.

But only Veltman had the machinery to do what had to be done.
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On-shell and off-shell propagators. In momentum space,
k = (k0, ~k) , gµν = (−,+,+,+) :

∆F (k) =
−i

k2 + m2 − iε
, ∆±(k) = 2πδ(k2 + m2)θ(±k0) .

In position space:

∆F (x) =

∫
d4k e ikx ∆F (k) , ∆±(x) =

∫
d4k e ikx ∆±(k) .

By contour integration:

∆F (x) = θ(x0)∆+(x) + θ(−x0)∆−(x) , (1)

∆F ∗(x) = θ(x0)∆−(x) + θ(−x0)∆+x) .
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For the vertices n = 1, . . . , N in a diagram, arrange the
coordinates xn in the order of time, x01 < x02 < · · · < x0N , to obtain
the cutting relations, dispersion equations relating diagrams
on-shell and off-shell: ∑

S | 〉 〈 |S† = I .

The sum is over the intermediate states | 〉 . These are on-shell.
In S , we use the propagators ∆F (k) , in S†, we use ∆F ∗(k) .

The relation only holds if the Lagrangian L is real: L = L∗.

All this should be obvious: the evolution operator is unitary in a
theory where the Lagrangian L and the ensuing Hamiltonian H are

real (Hermitian) expressions of the fields.

But here we see how this is related to the Feynman diagrams, so
that unitarity is seen to be safeguarded if the relations in question

are ensured to hold when the infinities are subtracted.
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Massive and massless Yang-Mills theories had been studied (inter
alios) by Feynman, DeWitt, Faddeev and Popov, and Mandelstam,
motivated by gravity theory.

All used different Feynman rules. Were most of these wrong?
No.

Fixing the gauge can be done in many ways. But the mass term
would break gauge invariance. Even if the mass term is soft, it has
to be made gauge-invariant. Here is where the Higgs mechanism
comes in.
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Veltman had developed a computer program, “Schoonschip”,
to handle the complicated
algebra for Yang-Mills fields,
enriched with a mass term.
But if you merely add a
mass term to the Yang-Mills
equations, you add longit-
udinal degrees of freedom
to the vector particles,

where the kinetic
terms are missing.

This cannot be unitary.

“Why not? Feyman did
it the same way . . . .”
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But Feynman had not done it quite right. He had made pioneering
attempts in his Polish lecture notes. He found the ghost particles
of massive Yang-Mills, at one-loop level. −1 = 1− 2
He wisely stopped there.

B.S. DeWitt had it almost right, but he thought that the infinities
should not depend on the gauge-fixing. They do.

Faddeev and Popov had a short paper containing all the essentials
needed to understand how it should be done: path integrals!

None of them handled the BEH mechanism.
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My first priority was to handle Yang-Mills theories at the level of
Feynman diagrams, as Veltman was trying to do, but now using
absolute gauge invariance and gauge fixing.

Problem was: This looked like handling some symmetry for the
gauge-fixed theory, but:

This was not a symmetry! The signs were all wrong!

But we could handle it. Doing the combinatorics the hard way, I
could prove unitarity of such theories, by proving a generalisation
of the Ward Takahashi identities. Includes the BEH mechanism!

We derived identities for all diagrams with particles and/or
ghosts on mass shell in the external lines.

∑
ghosts

= 0 .
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Now it became clear why
Veltman had not yet found a
unitary subtraction method for
the infinities: he had a massive
Yang-Mills boson but had not
included the Higgs. He had
expected a scalar particle, but
with the same quantum
numbers as his heavy vector
bosons. Why should you add a
massive scalar particle with the
“wrong” quantum numbers?

But this turned out to contain the cure to all problems of
non-cancelling infinities. With the Higgs particle present, all
unwanted infinities disappeared (the remaining infinities should be
handled by renormalization).

12 / 23



The Slavnov-Taylor identities

We decided first to publish this result for theories without Higgs
mechanism.
I soon received 2 reactions from the outside world: A.A. Slavnov
and J.C. Taylor independently noted that the identities we derived
can be generalised for all external lines off mass shell. These
identities became known as the Slavnov-Taylor identities.

In this form, these identities are easier to prove. They express the
condition for the theory to obey causality and unitarity.
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Anomalies?

Understanding how infinities in Feynman diagrams cancel out is
important, but not the whole story. Physics is about the finite
parts after removal of infinities.
In calculating them, ambiguities could arise, such as the

Adler-Bell-Jackiw anomaly :
algebra suggests that the amplitude for π0 → γ γ should
cancel to zero, but boundary terms give a non-vanishing amplitude
– and so does experiment!

Can such anomalies destroy renormalisability?
The Adler-Bell-Jackiw anomaly itself could signify danger!

Are there more such anomalies ?
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Dimensional Regularisation and Renormalization

And so we had to ask the question: how do we explicitly remove
the infinities by some gauge-invariant regularisation procedure ?

Pauli-Villars or other procedures known to work for Abelian
theories, here fail (diagrams where vector particles interact with
one another are not regularised properly).

But we noted something:

If we add a 5th dimension to the theory, while all external lines stay
in 4 dimensions, then the 5th dimension acts as a gauge-invariant
regulator. This works only for diagrams with one closed loop.

What to do with multi-loop diagrams?
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How about 6, 7, or more dimensions? The extra dimensions cause
havoc in multi-loop diagrams – cannot serve as regulators. Finally
we asked:

Does the number of dimensions have to be integer?
If we substitute a non-integer n in functions such as
Γ(12nd + `), what happens to the Slavnov-Taylor identities?

Turns out: they remain exactly valid. Infinities, residing in the
poles of the Γ functions, become finite when d is not on a pole.

This means we have a regulator!
Just let d → 4 sufficiently carefully.
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A few more steps towards the Standard Model:

Cornwall, Levin, Tiktopoulos: Gauge theories are the only
renormalizable theories for vector particles !

Veltman:
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The Slavnov-Taylor identities we produced by manipulating
Feynman diagrams can be derived in a much more elegant way, as
was discovered by Becchi, Rouet and Stora, an independently by
Tyutin.

We knew that the determinant in the functional integral can be
written in terms of an anti-commuting field variable, η and η.
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If A(x) represents the non-gauge-invariant fields, and the
gauge-fixing field operator is C (A), then the gauge fixing
Lagrangian is to be written as:

∆L = −λC (A, ϕ) + η
∂C (A, ϕ)

∂Λ
η ,

This describes the Faddeev-Popov ghosts η and η and
λ is a Lagrange multiplier field.

∑
ghosts

= 0 .

This is not a symmetry, but a super-symmetry for the gauge-fixed
Lagrangian:
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BRST

L = Linv + λa(x)C a(A, x) + ηa(x)
∂C a(x)

∂Λb(x ′)
ηb(x ′) + f (λa) .

δAa(x) = ε
∂Aa(x)

∂Λb(x ′)
ηb(x ′) ;

δηa(x) = 1
2ε f

abc ηb(x) ηc(x) ;

δηa(x) = −ε λa(x) ;

δλa(x) = 0 ,

→ δS = 0 .
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Gell-Mann, Fritzsch, Minkowski: Quantum Chromo Dynamics:

No direct BEH mechanism.
Vacuum and particle spectrum are invariant under the local group
SU(3) .

But the BEH mechanism is essential for understanding the
mechanism that removes from the physical spectrum all particles
whose fields are not invariant under SU(3) (quarks) from the
spectrum: they cannot occur as free particles but are confined.
Their masses are infinite.
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The kinematic properties of the quarks are understood as if the
quarks are connected by vortex lines that act like strings (the dual
resonance model).

These vortex lines are similar to the Meissner flux tubes.

if we make the dual transformation electric ↔ magnetic.
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THANK YOU
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