

Standard Model Higgs

- So far...
 - Discovery of a neutral scalar particle of mass ~125 GeV confirmed the predicted electroweak symmetry breaking mechanism of the SM
 - Experimental results show consistency with the SM Higgs boson
- But the SM is not perfect...
 - Hierarchy problem, dark matter, unification of the forces etc.
- Fortunately consistency with SM doesn't exclude Beyond SM scenarios

Beyond the Standard Model Higgs

General recipe: SM Higgs Doublet + Additional Field = Additional Higgs Bosons

- SM + another Higgs doublet = Two Higgs Doublet Model, 2HDM
 - 5 Higgs bosons: h, H, A, H⁺, H⁻
 - Free parameters: tanβ, a and m_A
 - Four variants to couple SM fermions to the 2HDs

Coupling scale factor	Type I	Type II	Lepton-specific	Flipped	
KV		sin($(\beta - \alpha)$		
κ _u	$\cos(\alpha)/\sin(\beta)$				
Кd	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	
κ_ℓ	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	

Table 5: Couplings of the light Higgs boson *h* to weak vector bosons (κ_V), up-type quarks (κ_u), down-type quarks (κ_d), and charged leptons (κ_ℓ), expressed as ratios to the corresponding SM predictions in 2HDMs of various types.

- Minimal Supersymmetric SM (MSSM)
 - "type II" 2HDM with fixed a
 - numerous benchmark models: hMSSM, m_h^{mod+}, etc.
- SM Higgs Run1 results => strict constraints on 2HDM.
 Data prefers alignment limit: cos(β- a)=0
 - h recovers properties of the SM Higgs
- SM + triplet = Higgs triplet models
 - Double charged Higgs boson + 2HDM Higgses

Strategies using Higgs to find New Physics

Strategies that use Higgs to find new physics:

- Indirectly, by looking for non-standard properties of light Higgs (spin, CP, couplings, LFV decays etc.)
- <u>Directly, by explicit search for BSM</u> objects
 - Additional Higgs bosons (neutral and charged, decays to SM particles or to Higgs bosons)
 - Higgs decays to BSM states (light scalar resonances, invisible decays, long lived particles etc.)
 - see talks by L.Truong and Y.Gershtein

Today:

- Neutral Higgs to fermions
 - $H \rightarrow \tau \tau$ JHEP 01 (2018) 055
 - bH \rightarrow bb arXiv:1907.02749
- Charged Higgs
 - H[±] → TV JHEP 09 (2018) 139
 - H[±] → tb JHEP 11 (2018) 085
 - $H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}$ Eur. Phys. J. C78 (2018) 19
 - $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Eur. Phys. J. C (2019) 79
- Higgs to dihiggs
 - see talk by S.Shrestha, C.Amendola
- Neutral Higgs to bosons
 - $H \rightarrow \gamma \gamma$ ATLAS-CONF-2018-025

Disclaimer:

Incomplete set of analysed Higgs channels. Only most recent results shown. New results with full Run-2 dataset coming!

Heavy neutral Higgs decays to fermions

- In the MSSM, the heavy Higgs boson couplings to down-type fermions (τ ,b) are strongly enhanced for a large part of the parameter space for large tanß
 - increased BRs to T- leptons and b-quarks
 - higher cross section for Higgs boson production in association with *b*-quarks
- Searches for both decays to b-quarks and T- leptons needed to cover all 2HDM Types
 - T- leptons sensitive to II and Lepton-specific Types
 - b-quarks sensitive to II and Flipped Types

Neutral Higgs searches: $H/A \rightarrow TT$

JHEP 01 (2018) 055

Higgs Hunting 2019

1500

*m*₄ [GeV]

1000

500

ATLAS 2015

Observed

Expected ± 1σ

±2σ

6/12

Neutral Higgs searches: bH/A→bb

arXiv:1907.02749

Anna Kaczmarska, INP PAN

7/12

Charged Higgs searches

H[±] predicted by 2HDM, Higgs triplets,... In Type II 2HDM:

- Main production in association with a top guark
- At high mass $H^{\pm} \rightarrow tb$ is the dominant decay mode
- $BR(H^{\pm} \rightarrow \tau v)$ significant for a large range of masses for high tanß

 $(m_{H+} > m_{top})$ $(m_{H+} < m_{top})$ 00000 00000 00000 00000

H^{±±} predicted by Left-Right Symmetric Models (LRSM), Higgs Triplet Model (HTM), Zee-Babu and Georgi-Machacek models In LRSM and HTM:

- Dominant production at the LHC: DY pair production
- Decays: $H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}$ or $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$
 - BR ~ $f(m_{H++}, vev of Higgs triplet)$
 - Low m_{H++} and low vev: $H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}$ dominates

• H[±]→τν JHEP 09 (2018) 139 JHEP 11 (2018) 085 • $H^{\pm} \rightarrow \pm b$ • H^{±±}H[∓]→4W Eur. Phys. J. C (2019) 79 • H[±] -> W[±]Z Phys. Lett. B 787 (2019) 68 • H^{±±}H[∓]→4| Eur. Phys. J. C78 (2018) 199 • H[±] -> cs Eur. Phys. J. C, 73 6 (2013) 2465, Run1 Higgs Hunting 2019

Charged Higgs searches: $H^{\pm} \rightarrow \tau v$, tb

JHEP 09 (2018) 139 JHEP 11 (2018) 085

Doubly charged Higgs searches: $H^{\pm\pm}H^{\mp\mp}\rightarrow 4W$, 41

Anna Kaczmarska, INP PAN

10 / 12

Neutral Higgs decays to bosons: $H \rightarrow \gamma \gamma$ (low-mass)

ATLAS-CONF-2018-025

Generic search for diphoton resonances in mass range 65-110 GeV Events / GeV 50000 Three categories depending on how 2 γ 's candidates reconstructed (converted or not) 40000 Main backgrounds described with analytic functions validated on data 30000 Continuum: $\gamma\gamma$, γ j, jj (jets misidentified as γ 's) $Z/\gamma^* \rightarrow e^+e^-$ (Drell-Yan): e's reconstructed as γ 's 20000 The fit is performed to the $m(\gamma\gamma)$ spectra in the three conversion categories 10000 [fb] 220 ATLAS Preliminarv Observed മ 200 √s = 13 TeV, 80 fb⁻¹ ---- Expected α^{fid} 500 180⊢ X→γγ $\pm 1\sigma$ Ч ±2σ 160 -500 **CL Upper Limit** 140 500 120E

100

110

m_v [GeV]

11 / 12

•

100

80

60

40

20

n

30-101 fb

Anna Kaczmarska, INP PAN

70

80

90

95%

Summary

- There is a plethora of searches for BSM physics in the Higgs sector at the LHC
- Only a small selection of results were presented here
- No evidence for any BSM Higgs Boson... yet
- Dedicated efforts in the combinations help improve sensitivity
- By now only impressive agreement with SM observed, instead of inspiring surprises
- But we have not yet finished! Much more Run2 data (140/fb) to analyse!
- We will turn every stone

 but for now we need to wait a bit to tell an inspiring story to stimulate the HL-LHC and future experiments

Courtesy of J. Keller

Neutral Higgs searches: H/A→TT

JHEP 01 (2018) 055

Higgs Hunting 2019

15 / 12

Anna Kaczmarska, INP PAN

Neutral Higgs searches: H/A→TT

JHEP 01 (2018) 055

The observed and expected 95% CL upper limit on the production cross section times branching fraction for φ ->tautau as a function of the fractional contribution from b -associated production and the scalar boson mass. The solid and dashed lines represent contours of fixed $\sigma \times B$

Neutral Higgs searches: $bH/A \rightarrow bb$

arXiv:1907.02749

In order to isolate events with small FSR and good m_{ϕ} resolution, a principal component analysis (PCA) is performed on the three dimensional distribution of the variables m_{bb} , p_{T1} , and p_{T2} using events drawn from the signal MC sample with the *bbb* classification following pre-selection. Separate PCA's are performed for each of the fifteen simulated values of m_{ϕ} and for each of the three *n*-jet regions. Upon diagonalization of the covariance matrix for m_{bb} , p_{T1} , and p_{T2} , the first, second and third principal components define the variables m'_{bb} , p'_{T1} , and p'_{T2} , respectively. The point $(m'_{bb}, p'_{T1}, p'_{T2}) = (0, 0, 0)$ corresponds to the vector of mean values for m_{bb} , p_{T1} , and p_{T2} . Two-dimensional distributions of p'_{T1} versus m'_{bb} and of p'_{T2} versus m'_{bb} are shown in Figure 4.

H[±] decay modes

- For $m_{H^+} < m_{top}$, the decay $H^{\pm} \rightarrow \tau v$ usually dominates in a type-II 2HDM
- For $m_{H_+} > m_{top}$, the dominant decay is $H^{\pm} \rightarrow tb$, however the branching fraction of $H^{\pm} \rightarrow \tau v$ can reach 10–15% at large values of tanß in a type-II 2HDM

$H^{\pm} \rightarrow \tau v$: Selection

T_{had} +jets: pp \rightarrow bbWH[±] \rightarrow bb(jj)(T_{had} v)

Sensitive at large $m_{H\pm}$

- E_T^{miss} trigger
- Select events with a T_{had} and a hadronic top-quark decay:

 - 1 τ_{had} object with p_T > 40 GeV, 3 jets with p_T > 25 GeV, including 1 b-tag
 - Electron and muon veto
 - E_τ^{miss} > 150 GeV
 - m_T > 50 GeV

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}}(1-\cos\Delta\phi_{\tau,{\rm miss}})$$

T_{had} +lepton: pp \rightarrow bbWH[±] \rightarrow bb(lv)(T_{had} v)

Sensitive at low/intermediate $m_{H\pm}$

- Single lepton trigger
- Select events with a Thad and a leptonic top-quark decay:
 - 1 T_{had} object with $p_T > 30$ GeV,
 - 1 lepton with $p_T > 30$ GeV
 - Two opposite sign channels: e+T_{had} μ +T_{had}
 - At least 1 b-tagged jet with p_T > 25 GeV
 - E_T^{miss} > 50 GeV

Dominant backgrounds: SM ttbar production, misidentified jets as fake Thad

Backgrounds with a true Thad: Backgrounds with e, μ faking T_{had}: Backgrounds with jets faking Thad:

MC MC + data-driven corrections data-driven fake-factor method

H[±]→TV: Analysis Strategy

Multivariate discriminant:

- FastBDTs trained in 5 H[±] mass bins
- Separate training for τ_{had} +jets and τ_{had} +lepton final states
- Polarisation variable used for 1-prong τ_{had} objects when $m_{H^+} <$ 500 GeV
 - discrimination between $H^{\pm} \rightarrow \tau v$ (signal) and $W^{\pm} \rightarrow \tau v$ (top background)
 - increase of sensitivity for low H[±] masses

$$\Upsilon = \frac{E_{\mathrm{T}}^{\pi^{\pm}} - E_{\mathrm{T}}^{\pi^{0}}}{E_{\mathrm{T}}^{\tau}} \simeq 2 \, \frac{p_{\mathrm{T}}^{\tau \text{-track}}}{p_{\mathrm{T}}^{\tau}} - 1$$

- No statistically significant deviation from the SM predictions
- Exclusion limits obtained from a fit of the BDT distributions

Systematic uncertainties:

- dominant at low m_{H±} : fake factors method
- dominant at high m_{H±}: signal modelling

$H^{\pm} \rightarrow \tau v$: Fake Factors method

• Define an anti-tau region, which is similar to the signal region but where a tau candidate fails the ID-tau requirement, instead of fullfiling it.

$$FF = \frac{N_{\tau-\mathrm{id}}}{N_{\mathrm{anti}-\tau-\mathrm{id}}}$$
$$N_{\mathrm{fakes}}^{\tau} = N_{\mathrm{fakes}}^{\mathrm{anti}-\tau} \times FF$$

- Two control region with different jet compositions are used in order to determine the rate of the fake tau object
 - Multi-jet CR (dominated by gluon-initiated jets)
 - W+jet CR (dominated by quark-initiated jets)
- In the anti-tau regions, the fractions of quark- and gluon-initiated jets misidentified as tau candidates are measured using a template-fit approach, based on variables that are sensitive to the difference in quark- and gluon-fractions between these two types of jets

$H^{\pm} \rightarrow tb$: Selection

- At least one leptonic top-quark decay
 - single-lepton triggers
- Considers 200 GeV < m_{H+} < 2000 GeV
- Single- and di-lepton (OS) channels
- Z-veto in ee and $\mu\mu$ channels;
- Event categorisation in Signal and Control Regions according to the number of jets and b-jets

Single-lepton: CR 5j2b, SR 5j3b, SR 5j4b, CR 6j2b, SR 6j3b, SR 6j4b Di-lepton: CR 3j2b, CR/SR 3j3b, CR 4j2b, SR 4j3b, SR 4j4b

Anna Kaczmarska, INP PAN

22/12

$H^{\pm} \rightarrow tb$: Analysis Strategy

- The dominating background: ttbar +jets
 - Model = Powheg+Pythia8
 - Categorised according to the flavour of additional jets (b/c/light)
- Prompt leptons modelled with MC
- Non-prompt leptons in {{ modelled with MC and normalised with data in CR
- Non-prompt leptons in l+jets modelled with a data-driven matrix method
 - Use sample with enhanced non-prompt leptons (use loose selection)
 - Weight events by efficiencies for prompt and non-prompt leptons to pass default tight selection

ℓ+iets channel

PT(01)	Leading jet transverse momentum
$m(b-\text{pair}^{\Delta R^{\min}})$ $p_{\mathrm{T}}(j_5)$ H_2	Invariant mass of pair of <i>b</i> -tagged jets with smallest ΔR Transverse momentum of fifth jet Sacond Fox. Wolfram moment [128] calculated using all late and lantons
$\Delta R^{\rm avg}(b-{\rm pair})$	Average ΔR between all <i>b</i> -tagged jet pairs in the event
$\Delta R(\ell, b-\text{pair}^{\Delta R\min})$	ΔR between the lepton and the <i>b</i> -tagged jet pair with smallest ΔR
$m(u-\text{pair}^{\Delta R^{\min}})$	Invariant mass of the non-b-tagged jet-pair with minimum ΔR
H ^{jets} _T max	Scalar sum of all jets transverse momenta
$m(b-pair^{PT}T)$	Invariant mass of the b-tagged jet pair with maximum transverse momentum
m ^{max} (<i>b</i> -pair)	Largest invariant mass of any two <i>D</i> -tagged jets
$m^{\max}(i-triplet)$	Largest invariant mass of any three jets
D	Kinematic discriminant based on mass templates (for $m_{H^+} \le 300 \text{ GeV}$)

 $\ell\ell$ channel, $m \leq 600 \, \text{GeV}$

vv channel, $m \ge 000$ Ge	v	2320	≥4J30	≥4J≥40
$ \begin{array}{c} m((j,b)^{p_{T}^{max}}) \\ \Delta E(j_{3},\ell_{2}) \\ E(j_{3}) \\ \Delta m(j_{1}+j_{2},j_{1}+j_{3}+\ell \\ \Delta R(j_{2},j_{1}+\ell_{2}+E_{T}^{miss}) \\ p_{T}(b_{1}) \\ p_{T}((\ell,b)^{\Delta q^{min}}) \\ m((\ell,b)^{\Delta \phi^{min}}) \\ \Delta E(b_{1},\ell_{1}+E_{T}^{miss}) \\ \Delta m(j_{2}+j_{3},j_{1}+\ell_{1}+\ell \\ \Delta m(\ell_{1}+j_{3}+E_{T}^{miss},j_{1}) \\ m^{min}(b,p_{3}t) \\ m^{min}(\ell,b) \\ p_{T}(b_{2}+\ell_{1}+\ell_{2}+E_{T}^{min}) \\ \Delta R(\ell_{2},j_{2}+j_{3}+\ell_{1}+E_{T}) \\ H_{T}^{all} \end{array} $	$ \begin{array}{c} \mbox{Inv. mass of the jet and b-tagged jet with largest p_T Energy difference between the third jet and the subleading lepton Energy of third jet \\ \mbox{Inv. mass difference between $j_1 + j_2$ and $j_1 + j_3 + \ell_2 + E_T^{miss}$ \\ \mbox{Inv. mass difference between $j_1 + j_2$ and $j_1 + \ell_2 + E_T^{miss}$ \\ \mbox{Inv. mass difference between subleading jet and $j_1 + \ell_2 + E_T^{miss}$ \\ \mbox{Inv. mass of the pair of lepton and b-tagged jet with largest $\Delta η \\ \mbox{Inv. mass of the pair of lepton and b-tagged jet with smallest $\Delta ϕ \\ \mbox{Energy difference between the leading b-tagged jet and $\ell_1 + E_T^{miss}$ \\ \mbox{Inv. mass difference between $j_2 + j_3$ and $j_1 + \ell_1 + \ell_2$ \\ \mbox{Inv. mass difference between $\ell_1 + j_3 + E_T^{miss}$ \\ \mbox{Inv. mass difference between $keling and third jet$ \\ \mbox{Smallest invariant mass of any pair of kepton and b-tagged jet pair$ \\ \mbox{Smallest invariant mass of any pair of kepton and b-tagged jet p_T of $b_2 + \ell_1 + \ell_2 + E_T^{miss}$ \\ \mbox{Scalar sum of all jets and leptons transverse energy} \end{cases} $	* * * * * * * * * * *	\$ \$ \$ \$ \$ \$ \$	* * * *
$\ell\ell$ channel, $m > 600$ Ge	V	3j3b	≥4j3b	≥4j≥4b
$ p_{T}((\ell, b)^{\Delta \eta^{\min}}) \\ \Delta p_{T}(j_{1}, j_{3}) \\ \Delta m(j_{2} + \ell_{1} + E_{T}^{\minss}, j_{1}) \\ p_{T}((\ell, b)^{\Delta R^{\min}}) \\ m(j_{-palr}^{A \eta^{\min}}) \\ \Delta p_{T}(j_{1}, j_{2} + E_{T}^{miss}) \\ p_{T}(j_{1} + j_{2} + j_{3} + \ell_{1}) \\ \Delta E(\ell_{1} + E_{T}^{miss}, j_{1} + j_{2}) \\ E(j_{1}) \\ p_{T}^{max}(j_{-palr}) \\ m(b_{1} + b_{2} + \ell_{1} + \ell_{2} + p_{T}((\ell, b)^{\Delta \eta^{\min}}) \\ \Delta m((\ell_{T} - \mu_{T} + h_{T}) \\ \Delta m(\ell_{T} - \mu_{T}) \\ D = p_{T}^{max}(j_{T} - \mu_{T}) \\ D = p_{T}^{max}$	$p_{T} \text{ of the pair of lepton and } b\text{-tagged jet with smallest } \Delta \eta$ $p_{T} \text{ difference between leading and third jets}$ $+ j_{3} + \ell_{1}) \text{ Inv. mass difference between } j_{2} + \ell_{1} + E_{T}^{\text{miss}} \text{ and } j_{1} + j_{3} + \ell_{1}$ $p_{T} \text{ of the pair of lepton and } b\text{-tagged jet with smallest } \Delta R$ $\text{ Inv. mass of the jet pair with smallest } \Delta \eta$ $p_{T} \text{ difference between leading jet and } j_{2} + E_{T}^{\text{miss}}$ $p_{T} \text{ of } j_{1} + j_{2} + j_{3} + \ell_{1}$ $p_{T} \text{ of the leading jet } \ell_{1} + E_{T}^{\text{miss}} \text{ and } j_{1} + j_{2}$ $p_{T} \text{ of the leading jet } MaxImum p_{T} \text{ of an jet pair}$ $p_{T} \text{ of the lepton-} b\text{-jet pair with smallest separation in } \eta$ $p_{T} \text{ of the lepton-} b\text{-jet pair with smallest separation in } \eta$ $p_{T} \text{ of the lepton-} b\text{-jet pair with smallest separation in } \eta$ $p_{T} \text{ of the lepton-} b\text{-jet pair with smallest separation in } \eta$	*** * * * * * *	***	\$ \$
$ \Delta p_{\rm T}(\ell_2, u_1 + b_2 + E_{\rm T}^{\rm min} \\ \Delta p_{\rm T}(\ell_2, u_1 + b_1 + E_{\rm T}^{\rm mis}) \\ \Delta p_{\rm T}(\ell_2, \ell_1 + E_{\rm T}^{\rm miss}) \\ \Delta p_{\rm T}(j_1, j_3 + \ell_1 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_1, j_2 + \ell_{\rm T}^{\rm miss}) \\ m^{\rm min}(b\text{-patr}) \\ H_{\rm T}^{\rm all} \\ H_{\rm T} \\ p_{\rm T}(j_3 + \ell_1) \\ \Delta p_{\rm T}(b_2, b_1 + \ell_2) \\ \Delta p_{\rm T}(j_2, j_3 + \ell_1 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_2, j_2 + \ell_1 + \ell_2 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_2, j_2 + \ell_1 + \ell_2 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_2, j_2 + \ell_1 + \ell_2 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_2, j_3 + \ell_1 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_3, j_2 + \ell_1 + \ell_2 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_3, j_2 + \ell_1 + \ell_2 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_3, j_3 + \ell_1 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_3, j_3 + \ell_1 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_3, j_3 + \ell_1 + \ell_2 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_3, j_3 + \ell_1 + \ell_2 + E_{\rm T}^{\rm miss}) \\ \Delta k_{\rm T}(j_3, j_3 + \ell_1 + \ell_2 + \ell_3 + \ell_3$	$ \begin{array}{ll} \begin{array}{ll} & p_{T} \text{ difference between subleading lepton and } u_{1} + b_{2} + E_{T}^{\text{miss}} \\ & p_{T} \text{ difference between subleading lepton and } u_{1} + b_{1} + E_{T}^{\text{miss}} \\ & p_{T} \text{ difference between subleading lepton and } \ell_{1} + E_{T}^{\text{miss}} \\ & p_{T} \text{ difference between leading lepton and } l_{1} + E_{T}^{\text{miss}} \\ & p_{T} \text{ difference between leading lepton and } j_{2} + \ell_{T}^{\text{miss}} \\ & \text{Energy difference between leading lepton and } j_{2} + E_{T}^{\text{miss}} \\ & \text{Smallest invariant mass of any } b \text{-tagged jet pair} \\ & \text{Scalar sum of all jets and leptons transverse momenta} \\ & p_{T} \text{ of } j_{3} + \ell_{1} \\ & p_{T} \text{ difference between subleading b \text{-tagged jet and } b_{1} + \ell_{2} \\ & p_{T} \text{ difference between subleading jet and } j_{3} + \ell_{1} + E_{T}^{\text{miss}} \\ & \text{Smallest inverse subleading jet and } j_{2} + \ell_{1} + \ell_{2} \\ & \text{Fmiss} \\ & \text{The provement is } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference between is locating jet and } l_{2} + \ell_{1} + \ell_{2} + E_{T}^{\text{miss}} \\ & \text{Energy difference between is locating jet and } l_{2} + \ell_{1} + \ell_{2} + E_{T}^{\text{miss}} \\ & \text{Smallest inverse is } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference between is locating jet and } l_{2} + \ell_{1} + \ell_{2} + E_{T}^{\text{miss}} \\ & \text{Smallest inverse is } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference between is } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference between } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Smallest inverse is } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference between } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference between } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference between } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference between } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference between } l_{\ell} + L_{\ell}^{\text{miss}} \\ & \text{Energy difference } l_{\ell} + L_{\ell}^{\text{miss}} \\ &$		\sim	* * * * * *

The BDT variables include various kinematic quantities with the optimal discrimination against the ttbar + >=1b background.

For H+ masses above 400 GeV the most important variables are the scalar sum of the pT of all jets and the leading jet pT.

For a mass at or below 300 GeV, a kinematic discriminant, D is used as an input variable for the BDT.

Kinematic Discriminant D

- $D = P_{H^+}(\mathbf{x})/(P_{H^+}(\mathbf{x}) + P_{t\bar{t}}(\mathbf{x}))$
- P_{H+}(x) and P_{tt}(x) are probability density functions for x under signal and background hypotheses
- x is $E_{\rm T}^{\rm miss}$ and four-momentum of e, μ , and jets
- $P_{H^+}(\mathbf{x})$ defined as the product of probability density functions for:
 - the mass of the semileptonically decaying top quark, $m_{b_\ell\ell
 u}$
 - the mass of the hadronically decaying W boson, $m_{q_1q_2}$
 - the difference between the masses of the hadronically decaying top quark and the hadronically decaying W boson, m_{b_hq₁q₂} - m_{q₁q₂}
 - the difference between the mass of the charged Higgs boson and the mass of the leptonically or hadronically decaying top quark, $m_{b_{\mu+}b_{\ell}\ell\nu} m_{b_{\ell}\ell\nu}$ or

 $m_{b_{H^+}b_{\ell}q_1q_2} - m_{b_{\ell}q_1q_2}$, depending on whether or not the top quark from the charged Higgs boson decays leptonically or hadronically

- Where:
 - q₁ and q₂ are quarks from the hadronic W decay
 - ℓ and u are from the leptonic W decay
 - b_h is the b-quark from the hadronic top quark decay
 - b_ℓ is the *b* quark from the leptonic top quark decay
 - b_{H^+} is the *b*-quark from the H^+ decay

courtesy of B. Burghgrave

Anna Kaczmarska, INP PAN

H^{±±}: Production and Decays

H^{±±} predicted by variety of BSM models:

- Left-Right Symmetric Models (LRSM)
 - addition of two triplets, L and R
- Higgs Triplet Model (HTM)
 - addition of one triplet, L
- Zee-Babu models, Georgi-Machacek models

Motivations

- Restoring parity symmetry in weak interactions at higher energy (LRSM)
- Explain light neutrino masses through Type II See-Saw mechanism

Most unique feature of such models: H^{±±}

 left and right-handed in LRSM or left-handed only in HTM

Decays: $H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}$ or $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$

- BR ~ $f(m_{H\pm\pm}$, vev of Higgs triplet)
- Low $m_{H\pm\pm}$ and low vev: $H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}$ dominates

26 / 12

$H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}$: Selection and Backgrounds

- Considered decays: $H^{\pm\pm} \rightarrow e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$ •
 - no preference for decays into taus coupling not proportional to m_{lept} like for the SM Higgs Masses studied: 250 - 1300 GeV
- Search for isolated, same sign lepton pairs
- Discrimination observable
 - dilepton invariant mass distribution in all CRs and SRs
 - For SR with 4 leptons •

$$\bar{M} \equiv (m^{++} + m^{--})/2.$$

Backgrounds:

- real prompt leptons
 - estimated with MC
- oppositely charged leptons with charge mis-ID
 - estimated with MC but with datadriven correction factors
- non-prompt
 - estimated from data
 - real e or μ from non-prompt decays, e.g. from heavy flavoured mesons
 - jets mis-reconstructed as electrons

27/12

$H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}$: Signal and Control Regions

- SRs with 2-, 3-, and 4-leptons and flavour categories
- Control Regions (CRs) to constrain background parameters in the statistical analysis
- Validation Regions (VRs) to check background model against data
- Regions defined by m(l[±]l[±]) > 200 GeV in SRs and below 200 GeV in most CRs and VRs

Anna Kaczmarska, INP PAN

28 / 12

Systematic uncertainties: fake factor method, statistical uncertainty, theory description

Anna Kaczmarska, INP PAN

29 / 12

$H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$: Selection and Backgrounds

- Masses studied: 200-700 GeV
- Dominant backgrounds: dibosons, Z+jets, ttbar
 - Prompt sources estimated from MC
 - Fake estimation: data-driven fake factor method
 - Charge misID: data-driven method

Mass-dependent and channeldependent cuts on discriminating variables:

- m_{XI} of all leptons in the event;
- ∆R(l±l±)
- p_{T} m_{jets} only in the 2L channel p_{T} leading jet
- $\Delta \phi(I^{\pm}I^{\pm}, E_{T}^{miss})$ in the 2L channel
- $\Delta R(I, jet)$ any lepton and its closest jet in the 3L channel
- S, used in $2L^{SS}$ channel, describes the event topology in the transverse plane, defined using the spread of the φ angles of the leptons, E_T^{miss} and jets

Anna Kaczmarska, INP PAN

30 / 12

$H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$: Results

Neutral Higgs searches: H/A→ttbar

32 / 12

ATLAS-CONF-2016-073

8 TeV results

ttbar lepton+jets channel (one W to hadrons, one to leptons)
re-interpretation for the ttbar resonance search (JHEP 08 (2015) 148)

- interference between the signal and ttbar background production modes taken into account for the first time
 - the MadGraph code is modified to remove the SM
 ttbar matrix element to yield the pure signal +
 interference contribution on an event-by-event basis.

• For a neutral pseudoscalar A (scalar H) with a mass of 500 GeV, the parameter values $\tan\beta < 0.85$ (< 0.45) are excluded in the type-II 2HDM at 95% confidence level

- No tanß values can be excluded for the higher mass point at 750 GeV

Neutral Higgs searches: H/A→mu mu

arXiv: 1901.08144

