Rare and Exotic decays of H(125)

Yuri Gershtein

Outline

- Do the masses of the second and first generation fermions come from Yukawa couplings to the Higgs
 - ♦ H→μμ
 - H→cc: Exclusive decays are used to reduce background (also see CMS VH(cc) talk for the first result using charm jet tagging)
- Can we detect new, otherwise unobservable new particles, through their interaction with the Higgs
 - H→invisible
 - $H \rightarrow \gamma \gamma_D$
 - H→4 fermions
- Outlook for Run 3 and HL-LHC
 - New triggers and detectors

- Small signal on top of Drell-Yan background
- Events are classified according to kinematics (BDT) and expected resolution $(\max(|\eta(\mu_1)|, |\eta(\mu_2)|)$
- 14 categories with algorithmically determined boundaries
 - most sensitive one is enriched with VBF production
 - Statistics dominates uncertainty; maximum systematics from category migration arising from jet energy scale and resolution

$H \rightarrow J/\psi J/\psi$

CMS-HIG-18-025

• The analysis is also sensitive to $H \rightarrow YY$ and Z decays

 Background is dominated by heavy flavor production, reduced by requiring the four muons to originate from the same vertex with a vertex probability of more then 5% (1% for YY), leaving mostly prompt di-J/ψ production *Yuri Gershtein*

VH→cc with c-flavor tag ^{CMS-HIG-18-031}

• First CMS search of its kind! See Loukas'es talk on Wednesday

200

Rare Decay Summary

	observed	expected	SM value	ref
Η→μμ	5.7 · 10 ⁻⁴	4.1 • 10-4	2.2 • 10-4	CMS-HIG-17-019
H→ee	0.0019	0.0024	5•10 ⁻⁹	CMS-HIG-13-007
Н→γ Ј/ψ	7.6•10 ⁻⁴	5.2 ^{+2.4} -1.6 •10 ⁻⁴	3 · 10 ⁻⁶	CMS-SMP-17-012
Η→J/ψJ/ψ	1.8·10 ⁻³	$1.8^{+0.2}_{-0.1}$ · 10 ⁻³	1.5.10-10	CMS-HIG-18-025
H→cc inclusive	2.1	$1.1^{+0.5}_{-0.3}$	0.03	CMS-HIG-18-031
H→YY	1.4·10 ⁻³	1.4±0.1 •10 ⁻³	2 • 10 ⁻⁹	CMS-HIG-18-025
Ζ→γ Ϳ/ψ	1.4·10 ⁻⁶	$1.6^{+0.7}_{-0.5}$ · 10^{-6}	9•10 ⁻⁸	CMS-SMP-17-012
Ζ→Ϳ/ψͿ/ψ	2.2 · 10 ⁻⁶	2.8 ^{+1.2} -0.7 •10 ⁻⁶		CMS-HIG-18-025
Ζ→ҮҮ	1.5·10 ⁻⁶	1.8 ± 0.1 $\cdot10^{-6}$		CMS-HIG-18-025

Exotic Higgs Decays

- Exotic Higgs decays do not have to be rare! $\Gamma_{SM} \sim 4 \text{ MeV}$
 - Br(H→BSM)<34% @95% CL
- Plethora of BSM possibilities in the literature
 - Reflection of the experimental reality that DM exists but likely does not carry SM charges – yet we live in the same vacuum
 - Two out of three possible "portals" to hidden sectors involve the Higgs
 - Exotic Higgs decays are generically sensitive to large mass scales

Target for BSM branching fractions: as low as possible!

H→invisible

2000

g

2000

W/Z

W/Z

ww

CMS-HIG-17-023

Η

ã'

q'

	observed	expected
VBF	0.33	0.25
Z(II)H	0.40	0.42
V(qq′)H	0.50	0.48
ggH	0.66	0.59

 VBF is the most sensitive
 Combining with 7 & 8 TeV Br(H → inv) < 0.19 (0.15) @95% CL

New: $H \rightarrow invisible in ttH$

- Recast of SUSY stop searches in tt+MET
 - SUS-16-049: all-jets, 51 search regions
 - SUS-16-051: one lepton, 27 search regions (M_{lb})
 - SUS-17-001: OS leptons, 26 search regions (M_{T2})

 ~1.5 times better sensitivity then ggH, despite almost 100 times smaller cross section

g

g

 \overline{m}

 \overline{m}

CMS-HIG-18-008

H

 λ^{0}

- ggH produces Higgs with low transverse momentum
- Have to require large ISR jets in order to trigger and suppress QCD background offline
- even more challenging for other (semi)visible hadronic Higgs decays

$H \rightarrow 4$ fermions

- Multiple scenarios give such final states
 - H \rightarrow aa', ss', V₁V₂, aV₁ \rightarrow (*xx*)(*yy*)
 - *x* and *y* are quarks or leptons
 - Pseudo-scalars or scalars can also decay into photon or gluon pairs
 - (qq)(qq)
 - (II)(qq)
 - (II)(II)
 - $H \rightarrow \chi_2 \chi_1 \rightarrow a \chi_1 \chi_1$ or $V \chi_1 \chi_1$
 - (qq)+MET
 - (II) + MET
 - These new particles may or may not decay preferentially to heavier particles (b's and τ's)
 Also, the lifetime can be from prompt to displaced
- New CMS searches since HH2018:
 - μμbb CMS-HIG-18-011
 - ττττ CMS-HIG-18-006

Masses could be such that the leptons / quarks are soft and / or close together in ΔR

Generically, main difficulty is triggering and QCD background rejection, favoring use of the decays involving leptons and/or associated production

Notable exception are longlived decays, where the main difficulty is the trigger

CMS-HIG-18-011

- di-muon trigger
- assume one new resonance and cut on

$$\chi^{2} = \left(\frac{m_{bb} - m_{\mu\mu}}{\sigma_{bb}}\right)^{2} + \left(\frac{m_{bb\mu\mu} - 125}{\sigma_{bb\mu\mu}}\right)^{2} < 5$$

- Sensitive variable: dimuon mass
- Categories in b-tag tightness
- Limits Br(H \rightarrow µµbb) ~ (1÷7)10⁻⁴
 - Model is needed to get to $Br(H \rightarrow aa)$

CMS-HIG-18-006

decay products of a_1

$H \rightarrow \tau \tau \tau \tau \rightarrow \mu^{\pm\pm} + 2$ tracks

- Same sign muons (18/10 GeV), dR > 2
- Each has to have an opposite charge track within dR=0.5, and no other tracks above 1 GeV
- Events are classified based on the two observed u-trk masses
 - 0-1, 1-2, 2-3, 3-4, 4-6, >6 GeV

Events / bin

Obs/Bkg

- Contribution from $H \rightarrow \mu\mu\tau\tau$ is considered
 - But good $\mu\mu$ mass resolution is not exploited to keep analysis simple and general
- Important to extend for a₁ masses 12-60 GeV

H→aa for a benchmark model

Run 3 and HL-LHC

HL-LHC: 30-40 ps timing for tracks and photons, track trigger efficient up to ~few cm

Summary

- Legacy Run 2 analyses are progressing
 H→µµ is within striking distance stay tuned!
- Higgs decays may be our only window on the Dark Sector
 A lot of work is done, but we really only beginning to scratch the surface
 - Semi-visible final states, long-lived particles, etc.
- New triggers and experimental ideas are required to take full advantage of the large number of Higgs bosons LHC is producing
 - should be one of the main goals for HL-LHC and the upgrades