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•Data driven:
• DM
• Neutrino masses
• Matter vs antimatter asymmetry
• Dark energy
• …

•Theory driven:
• The hierarchy problem and naturalness
• The flavour problem (origin of fermion families, mass/mixing 

pattern)
• Quantum gravity
• Origin of inflation
• …
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The way towards answers

One question, however, has emerged in stronger and stronger terms from 
the LHC, and appears to single out a unique well defined direction….
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We must learn to appreciate the depth and the value of this 
question, which is set to define the future of collider physics
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both sign 
and value 
totally 
arbitrary

>0 to ensure 
stability, but 
otherwise arbitrary

any function of |H|2 would be 
ok wrt known symmetries



a historical example: superconductivity

•The relation between the Higgs phenomenon and the SM is similar to 
the relation between superconductivity and the Landau-Ginzburg theory 
of phase transitions: a quartic potential for a bosonic order parameter, 
with negative quadratic term, and the ensuing symmetry breaking. If 
superconductivity had been discovered after Landau-Ginzburg, we would 
be in a similar situations as we are in today: an experimentally proven 
phenomenological model. But we would still lack a deep understanding 
of the relevant dynamics.
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with negative quadratic term, and the ensuing symmetry breaking. If 
superconductivity had been discovered after Landau-Ginzburg, we would 
be in a similar situations as we are in today: an experimentally proven 
phenomenological model. But we would still lack a deep understanding 
of the relevant dynamics.

• For superconductivity, this came later, with the identification of e–e– 
Cooper pairs as the underlying order parameter, and BCS theory. In 
particle physics, we still don’t know whether the Higgs is built out of 
some sort of Cooper pairs (composite Higgs) or whether it is 
elementary, and in either case we have no clue as to what is the 
dynamics that generates the Higgs potential. With Cooper pairs it turned 
out to be just EM and phonon interactions. With the Higgs, none of the 
SM interactions can do this, and we must look beyond.
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• BCS-like: the Higgs is a composite object

• Supersymmetry: the Higgs is a fundamental field and

• λ2 ~  g2+g’2 , it is not arbitrary (MSSM, w/out susy breaking, has 
one parameter less than SM!)

• potential is fixed by susy & gauge symmetry
• EW symmetry breaking (and thus mH and λ) determined by the 

parameters of SUSY breaking

• …

examples of possible scenarios
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For all SM particles, m=gv, where g is their 
coupling to the Higgs. For the Higgs, the relation 
between self-coupling and mass is not universal, 
it depends on the detailed structure of the Higgs 
potential => until we test this relation, we 
cannot tell how the Higgs gets its mass ….
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• Lack of experimental evidence so far for a straightforward answer to 
naturalness, forces us to review our biases, and to take a closer look 
even at the most basic assumptions about Higgs properties 
• again, “who ordered that?”
• in this perspective, even innocent questions like whether the Higgs gives mass 

also to 1st and 2nd generation fermions call for experimental verification, 
nothing of the Higgs boson can be given for granted

• what we’ve experimentally proven so far are basic properties, which, from the 
perspective of EFT and at the current level of precision of the measurements, 
could hold in a vast range of BSM EWSB scenarios

➡ the Higgs discovery does not close the book, it opens a whole new 
chapter of exploration, based on precise measurements of its 
properties, which can only rely on a future generation of colliders

The hierarchy problem



Higgs physics targets
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HL-LHC

0.52 ≤ kλ ≤ 1.5 @ 68%CL

Higgs selfcoupling



Remarks and messages

• Updated HL-LHC projections bring the coupling sensitivity to the 
few-% level. They are obtained by extrapolating current analysis 
strategies, and are informed by current experience plus robust 
assumptions about the performance of the phase-2 upgraded 
detectors in the high pile-up environment

• Projections will improve as new analyses, allowed by higher 
statistics, will be considered
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1. To significantly improve the expected HL-LHC results, future 
facilities must push Higgs couplings’ precision to the sub-% level

2. The Higgs selfcoupling will nevertheless remain far from being 
measured with any precision

Remarks and messages
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Example of precision targets: 
constraints on models with 1st order phase transition

Combined constraints from precision Higgs 
measurements at FCC-ee and FCC-hh
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of the Standard Model. The points indicate a first 
order phase transition. 

gHZZ to 0.02 and λ to 
50% probe a good 

portion of parameter 
space, but not all

=> A.Glioti



The necessity of e+e– → ZH

p(H) = p(e–e+) – p(Z)

N(ZH) ∝	σ(ZH) ∝	gHZZ2

N(ZH[→ZZ]) ∝		
σ(ZH) x BR(H→ZZ) ∝		
gHZZ2 x gHZZ2 / Γ(H)

=> [ p(e–e+) – p(Z) ]2 peaks at m2(H) 
reconstruct Higgs events independently of the Higgs 
decay mode!

=> absolute measurement 
of width and couplings

mrecoil = √ [ p(e–e+) – p(Z) ]2
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J. de Blas et al, http://arxiv.org/abs/arXiv:1905.03764

Event rates higher than what ee colliders can provide are needed to 
reach sub-% measurements of couplings such as Hγγ, Hμμ, HZγ, Ηtt

http://arxiv.org/abs/arXiv:1905.03764
http://www.apple.com
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The sensitivity to the mass-scale of new physics, 
in terms of various EFT operators
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We can spend hours discussing details of 
each limit, how each accelerator could 

improve their reach, etc. etc
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We can spend hours discussing details of 
each limit, how each accelerator could 

improve their reach, etc. etc

My main take-away message is that there is 
sensitivity to multi-TeV scales, and, if we want to 
directly access physics at those scales, we need a 

multi-TeV collider ….
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* Sven et al, in Higgs Physics at the HL-LHC and HE-LHC, https://cds.cern.ch/record/2650162. 

A. Kaczmarska S. Gascon-
Shotkin 
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The exploration of BSM Higgs sectors at LHC is 
already pushing beyond the TeV region … 

eventually need to be able to go beyond …



• Huge Higgs production rates:
• access (very) rare decay modes
•push to %-level Higgs self-coupling measurement
•new opportunities to reduce syst uncertainties (TH & EXP) and push 

precision 

• Large dynamic range for H production (in pTH, m(H+X) , …):
•new opportunities for reduction of syst uncertainties (TH and EXP)
•different hierarchy of production processes
•develop indirect sensitivity to BSM effects at large Q2 , complementary 

to that emerging from precision studies (eg decay BRs) at Q~mH

• High energy reach
•direct probes of BSM extensions of Higgs sector

•SUSY Higgses
•Higgs decays of heavy resonances
•Higgs probes of the nature of EW phase transition
•…
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The unique contributions of a
 100 TeV pp collider to Higgs physics



SM Higgs: event rates in pp@100 TeV
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N100 = σ100 TeV × 30 ab–1

N14 = σ14 TeV × 3 ab–1

gg→H VBF WH ZH ttH HH

N100
24 x 
109

2.1 x 
109

4.6 x 
108

3.3 x 
108

9.6 x 
108

3.6 x 
107

N100/N14 180 170 100 110 530 390



• Hierarchy of production channels changes at large pT(H):
• σ(ttH) > σ(gg→H) above 800 GeV

• σ(VBF) > σ(gg→H) above 1800 GeV

H at large pT

 25



• At LHC, S/B in the H→γγ channel is O( few % )
• At FCC, for pT(H)>300 GeV, S/B~1
• Potentially accurate probe of the H pt spectrum 

up to large pt 

gg→H→γγ at large pT

 26

pT,min 
(GeV) δstat

100 0.2%
400 0.5%
600 1%
1600 10%
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Importance of standalone precise “ratios-of-BRs" measurements:

• independent of αS, mb, mc, Γinv systematics

• sensitive to BSM effects that typically influence BRs in different 
ways. Eg

BR(H→γγ)/BR(H→ZZ*)

loop-level tree-level

BR(H→μμ)/BR(H→ZZ*)
gauge coupling2nd gen’n Yukawa

BR(H→γγ)/BR(H→Zγ)
different EW charges in the loops of the two procs

BR(H→inv)/BR(H→γγ)
loop-level chargedtree-level neutral



HL-LHC FCC-ee FCC-hh
δΓH / ΓH (%) SM 1.3 tbd
δgHZZ / gHZZ (%) 1.5 0.17 tbd
δgHWW / gHWW (%) 1.7 0.43 tbd
δgHbb / gHbb (%) 3.7 0.61 tbd
δgHcc / gHcc (%) ~70 1.21 tbd
δgHgg / gHgg (%) 2.5 (gg->H) 1.01 tbd
δgHττ / gHττ (%) 1.9 0.74 tbd
δgHμμ / gHμμ (%) 4.3 9.0 0.65 (*)
δgHγγ / gHγγ (%) 1.8 3.9 0.4 (*)
δgHtt / gHtt (%) 3.4 ~10 (indirect) 0.95 (**)
δgHZγ / gHZγ (%) 9.8 – 0.9 (*)
δgHHH / gHHH (%) 50 ~44 (indirect) 6.5

BRexo (95%CL) BRinv < 2.5% < 1% BRinv < 0.025%

 30

Higgs couplings after FCC-ee / hh

* From BR ratios wrt B(H→4lept) @ FCC-ee

** From pp→ttH / pp→ttZ, using B(H→bb) and ttZ EW coupling @ FCC-ee
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Higgs self-coupling, gg→HH
From the detector performance studies: Pheno-level 

studies:

bbγγ bbZZ[→4l] bbWW[→2jlν] 4b+j 2b2τ+j

δκλ (%) 6.5 14 40 30 8



J. de Blas et al, http://arxiv.org/abs/arXiv:1905.03764

Higgs selfcoupling

http://arxiv.org/abs/arXiv:1905.03764
http://www.apple.com
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Direct detection of extra Higgs states at 
FCC-hh

(h2 ~ S,   h1 ~ H)
 33
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The way to read the previous plots

• It is often said that any operator that leads to visible deviations in the 
Higgs selfcoupling will first manifest itself through deviations of single-
Higgs couplings, eg to gauge bosons. 

• However, the point is not really to establish which observable/collider 
will first detect deviations induced by a given model or EFT operator: 
there are many op’s that modify the single-Higgs couplings, and do not 
impact the self-coupling. So the measurement of the self-coupling 
remains important for any post-mortem of SM departures

• Furthermore, if the purpose of precision Higgs measurements is to 
detect deviations, the natural continuation of this programme is to 
search for the microscopic origin of those deviations.   

 34
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On the interplay of various H and EW couplings. 

Example: extracting Higgs self-coupling from gg→HH at FCC-hh
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… these we must 
assume, or measure 
independently

… these would come into play if we eventually need to decode the 
origin of a deviation, as possible alternative sources of new physics

this we want 
to probe …

On the interplay of various H and EW couplings. 

Example: extracting Higgs self-coupling from gg→HH at FCC-hh
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Direct measurement of ttH coupling: from Rt = σ(ttH)/σ(ttZ)
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Direct measurement of ttH coupling: from Rt = σ(ttH)/σ(ttZ)
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tZ

+

Rt =

FCC-hh can measure Rt with ΔRt/Rt ~ 2%

these we want….

this we know (light 
quarks)this we must measure!

t

t

Ze+

e–

δλ/λ=5% 
from 

gg→HH 
assuming 
SM inputs

δλ/λ ~ 10% 
from global 

fit



EW parameters 
@ FCC-ee

 37

*



 38
Constraints on the coefficients of various EFT op’s from a global fit of (i) EW observables, (ii) Higgs couplings and 
(iii) EW+Higgs combined. Darker shades of each color indicate the results neglecting all SM theory uncertainties. 

Global EFT fits to EW and H observables at FCC-ee
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• Higgs and EW observables are greatly complementary in 
constraining EFT ops and possibly exposing SM deviations

1. An ee Higgs factory needs to operate at the Z pole and WW 
threshold to maximize the potential of precision measurements 
of the EW sector

Remarks and key messages

 39

• EW&Higgs precision measurements at future ee colliders could 
probe scales as large as several 10’s of TeV (ci ~ 1÷ 4π)

2. To directly explore the origin of possible discrepancies, requires 
collisions in the several 10s of TeV region



High energy probes of EW dynamics



WLWL scattering

large mWW

q

q

H0	+	Z0	

W±

W±
W±

W±

κW =
gHWW

gSM
HWW



c2V cV 

 42

Example: high mass VV → HH

where
cV = gHVV /gSM

HVV

c2V = gHHVV /gSM
HHVV

⇒ (c2V − c2
V)SM

= 0{



3 ab–1

30 ab–1

 43

N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang, 

arXiv:1605.08744

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu, 

arXiv:1504.07617

tbH+ →tbτν
tbH+ →tbtb

bbH0/A0 →bbττ
bbH0/A0 →bbtt
t(t)H0/A0 →t(t)tt

LHC 3 ab–1

LHC 0.3 ab–1

MSSM Higgs @ 100 TeV

20 TeV20 TeV
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Final remarks

• From the pure perspective of Higgs coupling measurements, circular 
or linear e+e– colliders can be made to deliver comparable results. 

• But these measurements should be seen in the broader context of 
extending our knowledge over many fronts, ranging …

• … from the full coverage of EW precision observables, to EW 
dynamics at high energies, 

• … from the exploration of extended Higgs sectors, to the 
conclusive understanding of the nature of the EW phase transition, 

• … from the direct search for the microscopic origin of deviations 
in precise measurements of Higgs/EW properties, to deeper 
probes of flavour phenomena

• In this perspective, the combination of a circular e+e– collider in the 
range 90-365 GeV, and its follow-up 100 TeV pp collider, appears like a 
uniquely powerful future facility !
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Additional material



Higgs @ pp colliders of different energies
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Higgs @ pp colliders of different energies

HL-LHC: λ/λSM ~1±0.5 (68%CL) 

HE-LHC: λ/λSM ~1±0.15 (68%CL) 



Higgs @ pp colliders of different energies


