

Search for the Higgs boson decay to a pair of muons with 139 fb-1 at the ATLAS detector at the LHC

Miha Zgubič (miha.zgubic@cern.ch) on behalf of the ATLAS Collaboration

> Higgs Hunting July 31, 2019 Paris, France

UNIVERSITY OF OXFORD

Motivation

Higgs discovery in 2012 a major triumph of the Standard Model

Observed in main production modes and many decay channels

H->µµ has sensitivity to coupling to second generation fermions

This talk: H->µµ with full Run 2 ATLAS dataset ATLAS-CONF-2019-028

Key difficulty

very small S/B (~1/500 inclusive)

-> keep as much signal as possible -> require excellent background modelling

Top figure from CERN Yellow Report 4, bottom from ATLAS-CONF-2019-028

Loose muon and event selection

Fully-multivariate categorisation to maximise sensitivity

Fit the dimuon invariant mass in data

Object and Event Selection

Loose quality muons Loose isolation |n| < 2.7, $p_T > 15$ GeV

 $|\eta| < 4.5$, $p_T > 25$ (30) GeV for $|\eta| < 2.4$ (otherwise) pileup reduction cuts loosest b-tagging (for the veto)

Loosest unprescaled single-µ triggers 2 opposite charge muons, lead muon $p_T > 27$ GeV Veto events with b-tagged jet(s) Recover FSR to improve mass resolution

Categorisation

jet channel XGBoost discriminant(s) 0-jet Higgs classifier (3 categories) 1-jet Higgs classifier (3 categories) \geq 2-jet VBF clf. (3 categ.), if not VBF: Higgs clf. (3 categ.)

Higgs classifier: ggF + VBF signal MC trained against data sidebands* <u>VBF classifier</u>: VBF signal MC trained against data sidebands

*data sidebands: 2015-2018, $m_{\mu\mu} \in [110, 120] \cup [130, 180] \text{ GeV}$

Training variables

Figures from ATLAS-CONF-2019-028

Categorisation summary

S = # signal events B = # background events (both m_{µµ} \in [120, 130] GeV)

Signal composition

Background composition

Category boundaries determined by optimising the number counting significance

Figure from ATLAS-CONF-2019-028

Background modelling: key challenge

"TRUE BACKGROUND"

mμμ

"TRUE BACKGROUND"

Very high-statistics MC needed to validate the background model. Dedicated fast DY simulation with parametrised response.

Event generation (DY only)

NLO Powheg (0 and 1 jet) and LO Alpgen (2 jet) fast event generation (~100 ab⁻¹)

Muon corrections

Parametrised smearing for p_T , derived from full-sim. Reco+ID, isolation, impact parameter efficiencies derived from full-sim. Trigger efficiencies from measurements in data.

+ Jet p_T corrections + FSR resolution + Pileup jet overlay + MET smearing

Normalisation adjusted to data.

BACKGROUND MODEL

mμμ

BACKGROUND MODEL

$PDF_{bkg}(m_{\mu\mu}) = Rigid core \times Empirical function$

Different in each category* <u>Common to all categories</u>

Rigid, physics-inspired shape. Flexible analytical function. Analytic LO $2 \rightarrow 2$ Drell-Yan lineshape, Models remaining part of the spectrum. convolved to model muon resolution.

*Selection procedure outlined in the backup

SIGNAL MODEL

Double-sided Crystal Ball function

FSR tail

14

140 $m_{\mu\mu}$ [GeV]

Figure from ATLAS-CONF-2019-028

Example fit to data (VBF High)

Figure from ATLAS-CONF-2019-028

Uncertainties

Systematics ~0.1 Uncertainty on Systematics ~0.1

Systematic uncertainties sources:

Spurious signal (background mismodelling) 1) 2) Signal acceptance (theoretical and experimental)

Results

~50% improvement w.r.t. previous ATLAS result

Summary

Search for SM Higgs boson decay to muon pairs

Loose muon and event selection Optimised multivariate categorisation Improved background modelling

 0.8σ (1.5 σ expected)

Thank you!

BONUS

Event Display

Run 281411, Event 312608026 Time 2015-10-11, 18:40 CEST

μ

From ATLAS Public Event Displays

Observed Summary

Expected

Observed

	H Total	🗆 Sta	t. 🗖 Sys	st. — SM			
		Total	Stat.	Syst.			
	0.5	+ 1.6 - 1.4	(+ 1.5 - 1.4	, $^+$ 0.3)			
-	4.1	+ 2.5 - 2.4	(+ 2.4 - 2.3	, $^+$ 0.8 $$ 0.3)			
	4.8	+ 3.1 - 2.9	(± 2.9	, $^{+1.1}_{-0.5}$)			
	-2.7	+ 2.0 - 2.1	(+ 2.0 - 1.9	, $^+$ 0.3 $)$, $^-$ 0.8)			
	1.3	± 2.6	(± 2.5	, $^+$ 0.8)			
	-5.8	+ 4.1 - 4.8	(± 4.0	, $^{+1.0}_{-2.8}$)			
	0.6	± 2.1	(± 2.1	, $^{+ 0.4}_{- 0.2}$)			
	0.9	± 2.1	(± 2.1	, ± 0.4)			
	-2.6	+ 3.0 - 3.1	(± 3.0	, $^{+}_{-} \stackrel{0.5}{_{-} 0.9}$)			
	-0.9	± 2.3	(± 2.2	, $^+$ 0.3 $)$, $^-$ 0.5)			
	1.3	+ 2.7 - 2.6	(± 2.6	, $^{+ 0.6}_{- 0.4}$)			
	5.0	+ 4.4 - 4.2	(+ 4.2 - 4.1	, $^{+1.5}_{-0.9}$)			
	0.5	± 0.7	(± 0.7	, $^{+ 0.2}_{- 0.1}$)			
1	0	20)	30			
Signal strength							

Figures from ATLAS-CONF-2019-028

Summary

Figures from <u>ATLAS-CONF-2019-028</u>

Final state radiation

Muons can lose energy via radiating a photon: -> adding the photon to $m_{\mu\mu}$ calculation improves resolution

Only events with FSR

Events / GeV

All events

Figures from ATLAS-CONF-2019-028

Selected empirical functions

Category	Empirical Function	$\max(SS / \delta S)[\%]$	$\max(SS)$	
VBF High	Power0	10.6		
VBF Medium	Epoly2	0.51		
VBF Low	Power1	3.6		
2-jet High	Epoly2	8.7	-	
2-jet Medium	Epoly4	1.2		
2-jet Low	Epoly3	-8.2	-	
1-jet High	Power1	6.1	-	
1-jet Medium	Epoly3	-8.1	-	
1-jet Low	Epoly3	-2.5	-	
0-jet High	Power1	14.6	6 2	
0-jet Medium	Epoly3	-11.6	_	
0-jet Low	Epoly3	-18.5		
 הי	inction	Evnrossion		
T UIICUIOII		DAPIESSION		

_

Function	Expression
PowerN	$m_{\mu\mu}^{(a_0+a_1m_{\mu\mu}+a_2m_{\mu\mu}^2++a_Nm_{\mu\mu}^N)}$
EpolyN	$\exp(a_1 m_{\mu\mu} + a_2 m_{\mu\mu}^2 + \dots + a_N m_{\mu\mu}^N)$

$S/S_{SM})[\%]$

14.7 1.3 7.5 16.3 3.9 -33.2 12.1 -19.8 -5.8 26.5 -39.0 -74.2

Tables from ATLAS-CONF-2019-028

Category yields

Category	Data	S_{SM}	S	B	S/γ
VBF High	40	4.5	2.3	34	0
VBF Medium	109	5.5	2.8	100	0
VBF Low	450	9.6	4.9	420	0
2-jet High	3400	38	19	3440	0
2-jet Medium	13938	70	35	13910	0
2-jet Low	40747	75	38	40860	0
1-jet High	2885	32	16	2830	0
1-jet Medium	24919	107	54	24890	0
1-jet Low	77482	134	68	77670	0
0-jet High	24777	85	43	24740	0
0-jet Medium	85281	155	79	85000	0
0-jet Low	180478	144	73	180000	0

Table from ATLAS-CONF-2019-028

Background model selection

For each category:

- A) Re-weight the fast MC to data sidebands:
 - 1. 1st order polynomial in VBF categories
 - 2. 2nd order polynomial in Higgs categories

B) Pick the **Empirical function** based on these criteria:

- 1. Goodness of B-only fits: $P(\chi 2) > 1\%$
 - 1. Data sidebands
 - 2. Full-sim MC: DY (Sherpa), top, diboson
 - 3. Re-weighted fast MC
- 2. $SS/\sigma_S < 20\%$
 - 1. SS is the spurious signal (maximum over [120, 130] GeV range) obtained in S+B fits to re-weighted fast MC
 - 2. $\sigma_{\rm S}$ is the statistical uncertainty on the extracted signal at 139fb⁻¹
- 3. Smallest number of parameters
- 4. Smallest SS value

Both adjust normalisation

Full Object Selection

Muons 1)

- Loose muon Working Point
- FixedCutPflowLoose isolation
- pT > 15 GeV-
- |eta| < 2.7_
- impact parameters: $|d_0$ significance < 3.0, $|z_0 \sin(\theta)| < 0.5$ mm

2) <u>Jets</u>

- Antikt4TopoEM algorithm
- |eta| < 4.5_
- pT > 25 GeV for |eta| < 2.4
- pT > 30 GeV for 2.4 < |eta| < 4.5
- JetVertexTagging > 0.59 for (pT < 60 GeV && |eta| < 2.4) -
- fJVT < 0.5 forward region -
- pass MV2c10 60% WP for (|eta| < 2.5 & pT > 20 GeV). Only used for the b-veto purpose.
- <u>Electrons (only used for overlap removal)</u> 3)
 - Medium likelihood, pT > 7 GeV, |eta| < 2.47 excluding the crack region
 - Loose isolation _
 - impact parameters: $|d_0 \text{ significance}| < 3.0, |z_0 \sin(\theta)| < 0.5 \text{ mm}$

Full Event Selection

- Pass GRL and event cleaning for data
- Pass lowest unprescaled single muon trigger
- Trigger matching
- Two opposite sign muons
- Lead muon pT > 27 GeV
- Subleading muon pT > 15 GeV
- Veto events with a b-jet