Gravitino, candidat à la matière noire et les implications en nucléosynthèse primordiale

GDR SUSY - LAL Orsay

Sean Bailly

LPTA, Montpellier

Sous la direction de :

Michel Capdequi-Peyranère

Karsten Jedamzik Gilbert Moultaka

3 décembre 2008

Introduction

Contexte cosmologique de la théorie du Big Bang, un univers chaud et dense en expansion composé de :

- Énergie noire : 74%
- Matière :
 - Matière ordinaire : 4%Matière noire : 22%

Les problèmes de la matière :

- Nucléosynthèse primordiale : production des éléments légers
 - Bon accord pour les éléments A ≤ 4
 - Problèmes du lithium
- Nature de la matière noire

Il est possible de résoudre ces problèmes simultanément dans le cadre de la physique des particules : supersymétrie

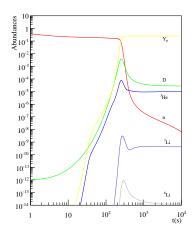
Sommaire

- Nucléosynthèse primordiale
 - Nucléosynthèse primordiale standard
 - Particule relique instable
- Matière Noire
- Supersymétrie
 - Extension du Modèle Standard
 - Transmission de la brisure
- Étude de la NLSP
 - Stau NLSP
 - Neutralino NLSP
 - Résultats BBN
- Densité relique du gravitino
 - Production non-thermique
 - Production thermique
 - Résultats matière noire
- 6 Conclusion

Sommaire

- Nucléosynthèse primordiale
 - Nucléosynthèse primordiale standard
 - Particule relique instable
- Matière Noire
- Supersymétrie
 - Extension du Modèle Standard
 - Transmission de la brisure
- 4 Étude de la NLSP
 - Stau NLSP
 - Neutralino NLSP
 - Résultats BBN
- Densité relique du gravitino
 - Production non-thermique
 - Production thermique
 - Résultats matière noire
- 6 Conclusion

Nucléosynthèse primordiale standard (1/3)

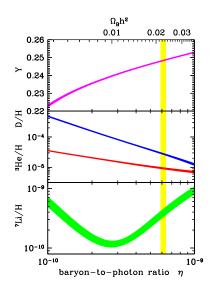

Jusqu'à 1 s : interactions faibles

$$n + e^+ \rightarrow p + \bar{\nu}_e$$

- Gel des interactions faibles $n/p = e^{-Q/T_f} \sim 1/6 \rightarrow 1/7$
- Goulot du deutérium

$$p+n \rightarrow \gamma+D$$

 $\gamma+D \rightarrow p+n$


- La production du deutérium commence vers 200 s
- D + $\rho \rightarrow {}^{3}\text{He} + \gamma$, D + ${}^{3}\text{He} \rightarrow {}^{4}\text{He} + \rho$
- Pas d'élément stable à A = 5 et A = 8
- Abondances faibles: ⁶Li, ⁷Li, ⁹Be

Nucléosynthèse primordiale standard (2/3)

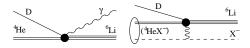
Un paramètre mesuré par WMAP

$$\eta = \frac{n_b}{n_\gamma} = (6.225 \pm 0.170) \times 10^{-10}$$

Nucléosynthèse primordiale standard (3/3)

Élement	SBBN	Observations	
$\left(\frac{D}{H}\right)$	$(2.60\pm0.16)\times10^{-5}$	$(2.68^{+0.27}_{-0.25}) imes 10^{-5}$	
$\left(\frac{^{3}\text{He}}{^{\text{H}}}\right)$	$(1.05\pm0.04)\times10^{-5}$	$(1.1 \pm 0.2) \times 10^{-5}$	
Y_p	0.2487 ± 0.0006	0.242 ± 0.002	
$\left(\frac{^{6}\text{Li}}{\text{H}}\right)$	$10^{-14} - 10^{-15}$	$(3-5) \times 10^{-12}$	
(TLi)	$(4.26^{+0.91}_{-0.86})\times 10^{-10}$	$(1.2-1.9)\times10^{-10}$	
$\left(\frac{^{9}\text{Be}}{\text{H}}\right)$	$< 10^{-17}$	$10^{-14} - 10^{-13}$	

Particule relique instable


- ullet Particule massive instable X avec une durée de vie $au_X \sim 10^2 10^6 \ s$
- Désintégration en particules du modèle standard
- Injection de photons et nucléons
 - photodésintégration : 7 Li + $\gamma \rightarrow ^{6}$ Li + n
 - spallation de ⁴He: 4 He + 4 He + 3 He + 2 n puis 3 He + 4 He \rightarrow 6 Li + n
- Modifications des abondances
- Particule X chargée négative : formation d'états liés
- Catalyse de réactions Pospelov, hep-ph/0605215

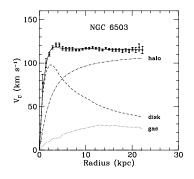
• $\sigma_{CBBN} \simeq 10^8 \times \sigma_{SBBN}$: forte contrainte sur l'abondance de lithium-6

Code prenant tous ces effets en compte Jedamzik, hep-ph/0604251 (désintégration de particules reliques, taux de réactions CBBN Kamimura et al., arXiv:0809.4772)

Particule relique instable

- ullet Particule massive instable X avec une durée de vie $au_X \sim 10^2 10^6 \ s$
- Désintégration en particules du modèle standard
- Injection de photons et nucléons
 - photodésintégration : 7 Li + $\gamma \rightarrow ^{6}$ Li + n
 - spallation de ${}^4\text{He}: {}^4\text{He} + n \rightarrow {}^3\text{He} + 2n$ puis ${}^3\text{He} + {}^4\text{He} \rightarrow {}^6\text{Li} + n$
- Modifications des abondances
- Particule X chargée négative : formation d'états liés
- Catalyse de réactions Pospelov, hep-ph/0605215

• $\sigma_{CBBN} \simeq 10^8 \times \sigma_{SBBN}$: forte contrainte sur l'abondance de lithium-6


Code prenant tous ces effets en compte Jedamzik, hep-ph/0604251 (désintégration de particules reliques, taux de réactions CBBN Kamimura et al., arXiv:0809.4772)

Sommaire

- Nucléosynthèse primordiale
 - Nucléosynthèse primordiale standard
 - Particule relique instable
- 2 Matière Noire
- 3 Supersymétrie
 - Extension du Modèle Standard
 - Transmission de la brisure
- étude de la NLSP
 - Stau NLSP
 - Neutralino NLSP
 - Résultats BBN
- 5 Densité relique du gravitino
 - Production non-thermique
 - Production thermique
 - Résultats matière noire
- 6 Conclusion

Matière Noire (1/2)

- Premières observations : F. Zwicky, 1933
- Etudes des profil de vitesse dans les galaxies : V. Rubin, 1970

- Ne porte ni charge électrique ni charge de couleur
- Principalement non-baryonique
- Densité de matière noire : WMAP, Komatsu et al., arXiv:0803.0547

$$\Omega_{DM} h^2 = 0.105^{+0.021}_{-0.030}$$

Sommaire

- Nucléosynthèse primordiale
 - Nucléosynthèse primordiale standard
 - Particule relique instable
- 2 Matière Noire
- Supersymétrie
 - Extension du Modèle Standard
 - Transmission de la brisure
- Étude de la NLSP
 - Stau NLSPNeutralino NLSP
 - Résultats BBN
- 5 Densité relique du gravitino
 - Production non-thermique
 - Production thermique
 - Résultats matière noire
- 6 Conclusion

Supersymétrie (1/4)

Au delà du modèle standard

Supersymétrie : symétrie entre fermions et bosons

• $Q | fermion \rangle = | boson \rangle$ $Q | boson \rangle = | fermion \rangle$

MSSM : nouvelles particules

nom	spin 0	spin 1/2	nom	spin 1/2	spin 1
leptons		(u_{eL}, \mathbf{e}_{L})	Jauge		g
		e_R			W^{i}
quarks		(u_L, d_L)			B^0
		(u_L, d_L) u_R, d_R			
Higgs	Н				

Deux particules importantes

Partenaire supersymétrique du lepton tau : le stau

$$\tilde{\tau} = \cos \theta_{\tau} \tilde{\tau}_{L} + \sin \theta_{\tau} \tilde{\tau}_{R}$$

Neutraling

$$\chi^{0} = N_{11}\tilde{B}^{0} + N_{12}\tilde{W}^{0} + N_{13}\tilde{H}_{u}^{0} + N_{14}\tilde{H}_{d}^{0}$$

Supersymétrie (1/4)

Au delà du modèle standard

- Supersymétrie : symétrie entre fermions et bosons
- $Q | fermion \rangle = | boson \rangle$ $Q | boson \rangle = | fermion \rangle$
- MSSM : nouvelles particules

nom	spin 0	spin 1/2	nom	spin 1/2	spin 1
leptons, sleptons	$(ilde{ u}_{eL}, ilde{e}_{L})$	(ν_{eL},e_L)	Jauge , jauginos	ĝ	g
	$ ilde{e}_{R}$	e_R		$ ilde{W}^i$	W^{i}
quarks , squarks	$(\tilde{u}_L, \tilde{d}_L)$	(u_L, d_L)		$ ilde{B}^0$	B^0
	$ ilde{u}_R, ilde{d}_R$	u_R, d_R			
Higgs , Higgsinos	H_u, H_d	$ ilde{H}_u, ilde{H}_d$			

Deux particules importantes

Partenaire supersymétrique du lepton tau : le stau

$$\tilde{\tau} = \cos\theta_{\tau}\tilde{\tau}_{\mathit{L}} + \sin\theta_{\tau}\tilde{\tau}_{\mathit{R}}$$

Neutralino

$$\chi^{0} = N_{11}\tilde{B}^{0} + N_{12}\tilde{W}^{0} + N_{13}\tilde{H}_{u}^{0} + N_{14}\tilde{H}_{d}^{0}$$

- Brisure de la supersymétrie : ⇒ superpartenaires plus massifs
- Nécessité de briser la supersymétrie dans un secteur caché
- Le mode de transmission au secteur visible n'est pas connu

CMSSM

Brisure transmise par interaction gravitationnelle

$$m_{1/2}$$
, m_0 , A_0 , $\tan \beta$, $\operatorname{sgn} \mu$

GMSE

Brisure transmise par interaction de jauge $SU_C(3) \times SU_L(2) \times U_Y(1)$ avec un secteur messager

$$M_{\rm mess}$$
, Λ , N , $\tan \beta$, $\operatorname{sgn} \mu$

Supersymétrie (2/4) Transmission de la brisure

- - Brisure de la supersymétrie : ⇒ superpartenaires plus massifs
 - Nécessité de briser la supersymétrie dans un secteur caché
 - Le mode de transmission au secteur visible n'est pas connu

CMSSM

Brisure transmise par interaction gravitationnelle

$$m_{1/2}$$
, m_0 , A_0 , $\tan \beta$, $\operatorname{sgn} \mu$

$$M_{\text{mess}}$$
, Λ , N , $\tan \beta$, $\operatorname{sgn} \rho$

- Brisure de la supersymétrie : ⇒ superpartenaires plus massifs
- Nécessité de briser la supersymétrie dans un secteur caché
- Le mode de transmission au secteur visible n'est pas connu

CMSSM

Brisure transmise par interaction gravitationnelle

$$m_{1/2}$$
, m_0 , A_0 , $\tan \beta$, $\operatorname{sgn} \mu$

GMSB

Brisure transmise par interaction de jauge $SU_C(3) \times SU_L(2) \times U_Y(1)$ avec un secteur messager

$$M_{\text{mess}}$$
, Λ , N , $\tan \beta$, $\operatorname{sgn} \mu$

Supersymétrie locale et brisure

- Symétrie locale : dépendance sur les coordonnées d'espace-temps
- Supersymétrie locale = supergravité : contient les interactions gravitationnelles
- ullet Graviton et son superpartenaire le gravitino \tilde{G} de spin 3/2
- Lors de la brisure, G devient massif

$$m_{3/2} = \frac{F}{\sqrt{3}M_{\rm Pl}}$$

où \sqrt{F} est l'échelle de brisure de la supersymétrie et $M_{\rm Pl}$ la masse de Planck

Masse du gravitino

Les interactions du gravitino avec les autres particules $\propto \frac{m_{\rm soft}^2}{T}$

R-parité

- Pour supprimer des canaux de désintégration du proton
- Conservation d'un nombre quantique :

$$P_R = (-1)^{3B+L+2S}$$

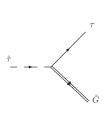
- Désintégration d'une particule SUSY en un nombre impair de particules SUSY
- LSP stable
- Gravitino : candidat à la matière noire

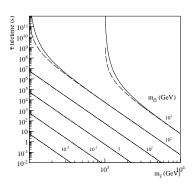
Vue d'ensemble

Supersymétrie

- Gravitino LSP (GMSB ou CMSSM avec conservation de la R-parité)
- Neutralino ou stau NLSP

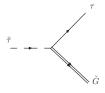
Cosmologie


- Matière noire : le gravitino est un candidat
 - \Rightarrow calculer sa densité relique : $\Omega_{3/2}h^2$
- Problèmes du lithium : NLSP instable se désintégrant pendant ou après la BBN
 - \Rightarrow calculer la durée de vie de la NLSP : τ_{NLSP}
 - \Rightarrow densité relique de la NLSP : $\Omega_{\text{NLSP}} h^2$
 - \Rightarrow largeur de désintégration à 3 et 4 corps et énergie : Γ , E


Sommaire

- Nucléosynthèse primordiale
 - Nucléosynthèse primordiale standard
 - Particule relique instable
- 2 Matière Noire
- Supersymétrie
 - Extension du Modèle Standard
 - Transmission de la brisure
- Étude de la NLSP
 - Stau NLSP
 - Neutralino NLSP
 - Résultats BBN
- 5 Densité relique du gravitino
 - Production non-thermique
 - Production thermique
 - Résultats matière noire
- 6 Conclusion

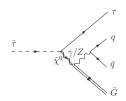
Ce processus domine la largeur totale de désintégration

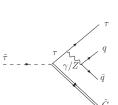

$$\Gamma_{
m tot} \simeq \Gamma(ilde{ au} o au ilde{G}) = rac{1}{48\pi} rac{m_{ ilde{ au}}^5}{M_{
m Pl}^2 m_{3/2}^2} \left(1 - rac{m_{3/2}^2}{m_{ ilde{ au}}^2}
ight)^4$$

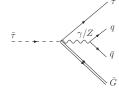
Ce processus domine la largeur totale de désintégration

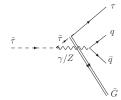
$$\Gamma_{
m tot} \simeq \Gamma(ilde{ au} o au ilde{G}) = rac{1}{48\pi} rac{m_{ ilde{ au}}^5}{M_{
m Pl}^2 m_{3/2}^2} \left(1 - rac{m_{3/2}^2}{m_{ ilde{ au}}^2}
ight)^4$$

Le tau est instable et se désintègre

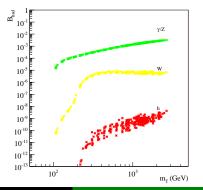

$$\begin{array}{cccc} \tau & \rightarrow & \nu_{\tau} \bar{\nu}_{\mathrm{e}} \mathbf{e} \\ \tau & \rightarrow & \nu_{\tau} \bar{\nu}_{\mu} \mu \\ \tau & \rightarrow & \nu_{\tau} \pi^{-} \end{array}$$


 \Rightarrow cascade électromagnétique


$$B_{
m em} = rac{\Gamma(ilde{ au} o au ilde{G})}{\Gamma_{
m tot}} \simeq 1 \qquad E_{
m em} = rac{1}{2} E_{ au} = rac{1}{2} \left(rac{m_{ ilde{ au}}^2 - m_{3/2}^2}{2m_{ ilde{ au}}}
ight)$$


Processus

$$\begin{array}{cccc} \tilde{\tau} & \rightarrow & \tau \tilde{\mathsf{G}} Z/\gamma \rightarrow \tau \tilde{\mathsf{G}} q \bar{q} \\ \tilde{\tau} & \rightarrow & \tau \tilde{\mathsf{G}} h \rightarrow \tau \tilde{\mathsf{G}} q \bar{q} \\ \tilde{\tau} & \rightarrow & \tau \tilde{\mathsf{G}} W \rightarrow \nu_{\tau} \tilde{\mathsf{G}} q \bar{\mathsf{Q}} \end{array}$$



Calcul de la largeur (CalcHEP, Pukhov, hep-ph/0412191)

$$\Gamma(ilde{ au} o au ilde{\mathsf{G}} q ar{q}; \mathit{m}^{\mathrm{cut}}_{q ar{q}}) = \int_{\mathit{m}^{\mathrm{cut}}_{q ar{q}}}^{m_{ar{ au}} - m_{3/2} - m_{ au}} \mathit{dm}_{q ar{q}} rac{\mathit{d}\Gamma(ilde{ au} o au ilde{\mathsf{G}} q ar{q})}{\mathit{dm}_{q ar{q}}}$$

masse invariante de la paire quark-antiquark : $m_{qar{q}}^2=E_{qar{q}}^2-p_{qar{q}}^2$

$$\mathcal{B}_{ ext{had}} = rac{\Gamma(ilde{ au}
ightarrow au ilde{G}qar{q}; extit{ extit{m}}_{qar{q}}^{ ext{cut}})}{\Gamma_{ ext{tot}}}$$

- \bullet Z/γ domine
- W supprimé car $ilde{ au} \simeq ilde{ au}_R$
- Effet de tan β : la contribution du Higgs augmente mais reste négligeable

À partir de la masse invariante

$$E_{
m had} = rac{1}{\Gamma(ilde{ au}
ightarrow au ilde{G}qar{q})} \int_{m_{qar{q}}^{
m cut}}^{m_{ar{ au}} - m_{3/2} - m_{ au}} dm_{qar{q}} m_{qar{q}} rac{d\Gamma(ilde{ au}
ightarrow ilde{G}qar{q})}{dm_{qar{q}}}$$

Inconvénient : perte d'information sur l'impulsion et l'énergie des particules

Spectre réaliste

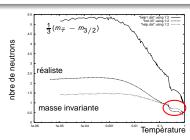
- Génération d'une distribution d'impulsion de $q\bar{q}$ (CalcHEP)
- Hadronisation (Pythia, Sjöstrand, Mrenna, Skands, hep-ph/0603175)
- Distribution d'énergie des nucléons et nombre moyen par désintégration

Comparaison des méthodes

Résultats similaires dans la région pertinente pour la BBN

À partir de la masse invariante

$$E_{
m had} = rac{1}{\Gamma(ilde{ au}
ightarrow au ilde{G}qar{q})} \int_{m_{ar{q}ar{q}}^{
m cut}}^{m_{ar{ au}} - m_{3/2} - m_{ au}} dm_{qar{q}} m_{qar{q}} rac{d\Gamma(ilde{ au}
ightarrow au ilde{G}qar{q})}{dm_{qar{q}}}$$

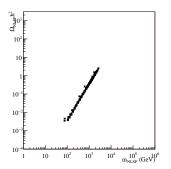

Inconvénient : perte d'information sur l'impulsion et l'énergie des particules

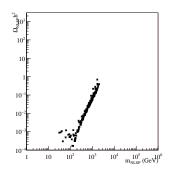
Spectre réaliste

- Génération d'une distribution d'impulsion de qq (CalcHEP)
- Hadronisation (Pythia, Sjöstrand, Mrenna, Skands, hep-ph/0603175)
- Distribution d'énergie des nucléons et nombre moyen par désintégration

Comparaison des méthodes

Résultats similaires dans la région pertinente pour la BBN




En considérant les processus d'annihilation et slepton-stau coannihilation

$$\Omega_{\tilde{\tau}} h^2 = (2.2 - 4.4) \times 10^{-1} \left(\frac{m_{\tilde{\tau}_1}}{1 \text{ TeV}}\right)^2$$

- Résultats similaires dans CMSSM et GMSB
- Effet de tan β : baisse de la densité relique
- Ne prend pas en compte les effets de coannihilation avec neutralino, résonance du Higgs, mélange L-R

Simulation numérique : micrOMEGAs, Bélanger et al.

$$\chi_{\rm 1}^0 = \textit{N}_{\rm 11} \tilde{\textit{B}} + \textit{N}_{\rm 12} \tilde{\textit{W}}^{\rm 0} + \textit{N}_{\rm 13} \tilde{\textit{H}}_{\it u}^{\rm 0} + \textit{N}_{\rm 14} \tilde{\textit{H}}_{\it d}^{\rm 0}$$

Désintégration à deux corps : $\chi \to \tilde{\mathbf{G}} \gamma$

$$\Gamma(\chi \to \gamma \tilde{\mathsf{G}}) = \frac{\kappa_{\gamma}}{48\pi} \frac{m_{\tilde{\chi}}^{5}}{M_{\rm Pl}^{2} m_{3/2}^{2}} \left(1 - \frac{m_{3/2}^{2}}{m_{\chi}^{2}} \right)^{3} \left(1 + 3 \frac{m_{3/2}^{2}}{m_{\chi}^{2}} \right)$$

avec $\kappa_{\gamma} = |N_{11} \cos \theta_W + N_{12} \sin \theta_W|^2$.

Désintégration hadronique à trois corps

$$\Gamma(\chi
ightarrow ilde{G}qar{q}; m_{qar{q}}^{
m cut}) = \int_{m_{qar{q}}^{
m cut}}^{m_\chi - m_{3/2}} dm_{qar{q}} rac{d\Gamma(\chi
ightarrow ilde{G}qar{q})}{dm_{qar{q}}}$$

avec l'énergie hadronique :

$$E_{
m had} = rac{1}{\Gamma(\chi
ightarrow ilde{G}qar{q})} \int_{m_{qar{q}}^{
m cut}}^{m_\chi - m_{3/2}} dm_{qar{q}} rac{d\Gamma(\chi
ightarrow ilde{G}qar{q})}{dm_{qar{q}}}$$

Densité relique

Également étudiée dans les cas neutralino LSP

Résultats BBN (1/4) CMSSM avec gravitino lourd

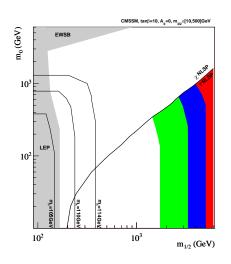
$$m_{3/2} = [10, 500] \text{GeV}$$

 $\tan \beta = 10$ $A_0 = 0$

: résolution
6
Li : $0.015 \le ^6$ Li/ 7 Li ≤ 0.66 et 7 Li $> 2.5 \times 10^{-10}$

- \blacksquare : résolution 7Li : $^6Li/^7Li \le 0.015$ et
- $8.5 \times 10^{-11} \le {}^{7}\text{Li} \le 2.5 \times 10^{-10}$
- : résolution ⁶Li et ⁷Li :

$$0.015 \le {}^6\text{Li}/{}^7\text{Li} \le 0.15 \text{ et}$$

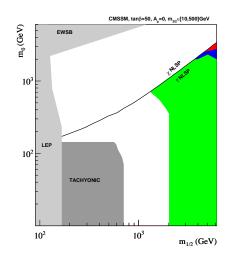

$$8.5 \times 10^{-11} < {}^{7}\text{Li} < 2.5 \times 10^{-10}$$

$$\Rightarrow m_{\tilde{G}} \in [70, 200] \text{GeV}$$

zones exclues par les contraintes LEP ou l'absence de brisure électrofaible

• Pas de solution pour χ

Résultats BBN (2/4) CMSSM avec gravitino lourd


$$m_{3/2} = [10, 500] \text{GeV}$$

 $\tan \beta = 50$ $A_0 = 0$

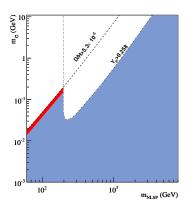
- : résolution ⁶Li
- : résolution 7Li
- : résolution ⁶Li et ⁷Li :

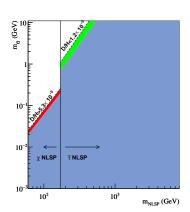
 $m_{\tilde{G}} \in [70, 200] \text{GeV}$

zones exclues par les contraintes LEP ou l'absence de brisure électrofaible

- ullet Solutions Li pour $ilde{ au}$ NLSP
- Pas de solution pour χ

Résultats BBN (3/4)

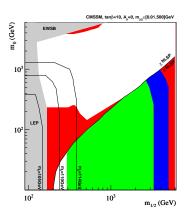

GMSB, gravitino léger $m_{\tilde{G}} = [10^{-2}, 10]$ GeV

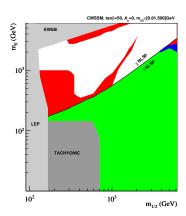

$$\textit{M}_{\text{mess}} = 5 \times 10^6 \text{ GeV et } \Lambda \in [5 \times 10^4, 5 \times 10^6] \text{GeV}$$

■: SBBN ■: résolution ⁶Li ■: résolution ⁷Li

 $N = 1 : \chi \text{ NLSP}$

$$N=2$$
 : $\tilde{\tau}$ et χ NLSP

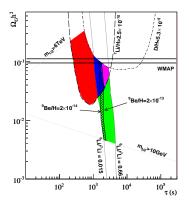

Résultats BBN (4/4)


CMSSM avec masse arbitraire de gravitino

■: SBBN ■: résolution ⁶Li ■: résolution ⁷Li ■: résolution ⁶Li et ⁷Li

- Solution ⁶Li pour stau léger
- Solution ⁷Li dans des régions typique du neutralino :

bulk coannihilation focus point funnel

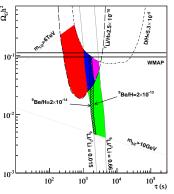

Sommaire

- Nucléosynthèse primordiale
 - Nucléosynthèse primordiale standard
 - Particule relique instable
- 2 Matière Noire
- Supersymétrie
 - Extension du Modèle Standard
 - Transmission de la brisure
- Étude de la NLSP
 - Stau NLSP
 - Neutralino NLSP
 - Résultats BBN
- Densité relique du gravitino
 - Production non-thermique
 - Production thermique
 - Résultats matière noire
- 6 Conclusion

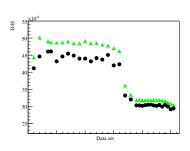
Production non-thermique

Production par désintégration de la NLSP

$$\Omega_{3/2}^{\rm NTP} h^2 = \frac{m_{3/2}}{m_{\rm NLSP}} \Omega_{\rm NLSP} h^2$$



Possibilité de résoudre les problèmes du lithium et la densité relique de matière noire simultanément.


Production non-thermique

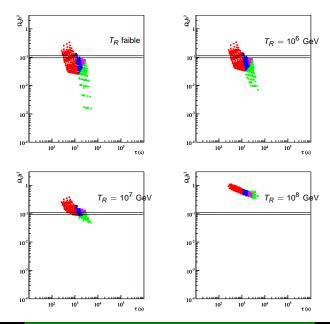
Production par désintégration de la NLSP

$$\Omega_{3/2}^{\rm NTP} h^2 = \frac{m_{3/2}}{m_{\rm NLSP}} \Omega_{\rm NLSP} h^2$$

Effet du calcul de l'énergie hadronique sur l'abondance de deutérium

Possibilité de résoudre les problèmes du lithium et la densité relique de matière noire simultanément.

Production thermique (1/2)


- Suite à l'inflation, une période de réchauffage
- Processus de diffusion avec émission d'un gravitino
- Exemple de processus :

$$g+g o ilde{g}+ ilde{\mathsf{G}}$$

Densité relique de gravitino :

$$\Omega_{3/2}^{\text{TP}} h^2 \simeq 0.32 \left(\frac{10 \text{ GeV}}{m_{3/2}} \right) \left(\frac{m_{1/2}}{1 \text{ TeV}} \right)^2 \left(\frac{T_R}{10^8 \text{ GeV}} \right)$$

Résultats matière noire

Conclusion (1/2)

- Deux problèmes cosmologiques : matière noire et nucléosynthèse primordiale
- Solutions dans le cadre de la supersymétrie
- Gravitino et stau ou neutralino
- \bullet Etude dans le cadre de modèles spécifiques CMSSM et GMSB : spectres réels avec $\tilde{\tau}_{\rm 1}$ ou χ NLSP
- Calcul de largeur de désintégration à 3 et 4 corps de la NLSP
- Calcul de l'énergie hadronique par différentes méthodes
- Densité relique de la NLSP
- Densité relique du gravitino : contribution thermique et non-thermique

Conclusion (2/2)

Gravitino	NLSP	⁷ Li	⁶ Li	$\Omega_{\rm DM} h^2$	collisionneurs
léger	stau	X	\checkmark	X	\checkmark
	neutralino	\checkmark	X	X	\checkmark
lourd	stau	\checkmark	\checkmark	\checkmark	X
	neutralino	X	X	X	\checkmark