RECHERCHE DU BOSON DE HIGGS AVEC LE DETECTEUR ATLAS

Francesco Polci LAL Orsay

GDR SUPERSYMETRIE

• SEARCH FOR A STANDARD MODEL HIGGS

HIGGS PROPERTIES MEASUREMENTS

• SEARCH FOR A MSSM HIGGS

• CONCLUSIONS

• SEARCH FOR A STANDARD MODEL HIGGS

HIGGS PROPERTIES MEASUREMENTS

• SEARCH FOR A MSSM HIGGS

• CONCLUSIONS

PRESENT LIMITS

HIGGS PRODUCTION AT THE LHC

THE VECTOR BOSONS FUSION (VBF)

Rapidity distribution

Signature:

- Two forward quark initiated "tag" jets (*large* η separation with high- p_T) with large invariant mass M_{ii}
- No jet activity in the central region (between the two tag jets) due to color singlet: rapidity gap →*jet veto*
- Higgs decay products between tag jets in η

Advantages:

- Provides high signal over background ratios
- Improve and extend measurement of Higgs boson parameters (couplings to bosons, fermions)
- Measure Higgs boson spin and CP properties.

THE SM HIGGS BOSON DECAYS

Many channels explored! All the mass range is covered!

PROSPECTS FOR A DISCOVERY AT LHC (<2006)

rough estimate of discovery potential

J.J. Blaising, A. De Roeck, J. Ellis, F. Gianotti, P. Janot, G. Rolandi and D. Schlatter, **Eur. Strategy workshop (2006)**

• Hardest for low masses

Warnings:

- these curves are optimistic on the $ttH, H \rightarrow bb$ performance

- systematic uncertainties assumed to be luminosity dependent

New ATLAS estimation will be available soon

IMPROVEMENTS

ATLAS: CERN-OPEN 2008-020

Update on the analysis techniques and the discovery potentials, almost ready for publication!

Warning: ALL ESTIMATIONS ARE BASED ON 14TeV !!!

- Detailed **GEANT simulations** of the detectors.
- New (N)NLO Monte Carlos for both signal and backgrounds.
 - MCFM Monte Carlo, J. Campbell and K. Ellis, http://mcfm.fnal.gov
 - MC@NLO Monte Carlo, S.Frixione and B. Webber, www.web.phy.cam.ar.uk/theory/
 - T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D68, 073005 (2003)
 - E.L.Berger and J. Campbell, Phys. Rev. D70, 073011 (2004)
 - C. Anastasiou, K. Melnikov and F. Petriello, hep-ph/0409088 and hep-ph/0501130
 - Resbos, Diphox, Jetphox

-

- New approaches to match parton showers and matrix elements
 - ALPGEN Monte Carlo + MLM matching, M. Mangano et al.
 - SHERPA Monte Carlo, F. Krauss et al.
 - ...

Tevatron data are extremely valuable for validation, work started.

- Better understood reconstruction methods (partially based on test beam results,...)
- Further studies of **new Higgs boson scenarios**
- Various MSSM benchmark scenarios
- CP-violating scenarios
- Invisible Higgs boson decays

-

$H \rightarrow \gamma \gamma$

• Important channel in the low mass region.

• It gives the best mass resolution thanks to excellent electromagnetic energy resolution

SELECTION

 $\rightarrow \varepsilon$ (respect to offline) = (93.6 ± 0.4)%

- **Identification cut** exploiting the shower shape.
- Fiducial cut: $0 < |\eta| < 1.37 \& 1.52 < |\eta| < 2.37$.
- **Isolation cut**: $\Sigma p_T < 4 \text{ GeV/c}$, considering all tracks with

 $p_T > 1 GeV/c$ in a $\Delta R = 0.3$ cone around the

electromagnetic cluster.

• **Momentum cut**: $p_T > 25 GeV/c$ and $p_T > 40 GeV/c$ for the two

most energetic photons.

In a mass window	h a mass window $M_H + - 1.4\sigma GeV$:		
Signal Process	Cross-section (fb)		
$gg \rightarrow H$	21		
$\operatorname{VBF} H$	2.7		
ttH	0.35		
VH	1.3		

BACKGROUNDS

Background is evaluated with *NLO* simulations. *It will be measured from data sidebands*.

Within a mass window M_H +/- 1.4 σ GeV:			
Background Process	Cross-section (fb)		
γγ	562		
Reducible γ <i>j</i>	318		
Reducible <i>jj</i>	49		
Drell Yan	18		

Strategy for jet rejection:

- *Longitudinal segmentation* of the calorimeter.
- Fine segmentation of the first layer (η -strips) => good π^0 rejection.
- *Isolation* of the *electromagnetic* cluster.
- *Isolation based on tracks* reconstructed by the inner detector.

INVARIANT MASSES DISTRIBUTIONS

SIGNIFICANCE

Fit and likelihood ratio are used for setting discovery potential and handle systematics.

Different fit based approaches:

- 1- fit only the $m(\gamma\gamma)$ distribution;
- 2- simultaneous fit to $m(\gamma\gamma)$, $P_T(\gamma\gamma)$ and $\cos \theta^*$
- Fit approaches are also performed with the Higgs mass floating.
- The use of *categories* with different resolutions based on η , *jet multiplicity* and *presence of conversions* improves the significance.

Distributions need to be handled with care: lots of comparisons between different Monte Carlo generators!!!

$H \rightarrow ZZ(*) \rightarrow 4l$

It is the "golden channel"!

- Observation of a clear peak on top of a smooth background!
- Wide range of masses explored

Background will be estimated in sidebands → low systematic uncertainties

Look to the Z with first data to understand lepton reconstruction and detectors response.
Z→ee mass peak is affected by electron bremsstrahlung.

SIGNIFICANCE

- Significance estimations from number counting and from a *full range fit* are consistent.
- Other approaches (background only sideband fit, two dimensional fit on M_{ll} and M_{Z^*} with Higgs mass floated) are also explored.

$H \rightarrow \tau \tau \ (VBF)$

- High BR in the low mass region.
- 3 channels: II, Ih, hh (65% of τ gives hadrons)

SELECTION

• **Trigger**: isolated electrons (µ) with $p_T > 22 (20) GeV/c$ ($\varepsilon \sim 10\%$)

 $\tau + E_T^{miss}$ ($\epsilon \sim 3.7\%$) for the *hh* channel

- Isolation cut
- Likelihood exploiting the shower shape and the track quality to separate τ and jet.
- **b-jet veto** to kill $tt(+jets) \rightarrow lvb \ lvb \ (+jets)$ (background for the *ll* channel)
- select highest E_T jets in opposite hemispheres
- Central jet veto

WWZZBR(H)0.010.001 $\mu\mu$ $Z\gamma$ 0.0001 100 130 160 200 300 5007001000 M_H [GeV]

BACKGROUNDS

- $Z \rightarrow \tau \tau + jets$
- $W \rightarrow \tau v + jets$
- tt+jets
- *QCD* multi-jets for the *hh* channel

MAIN ISSUES:

- Discrepancies in Monte Carlo generator \rightarrow impact on veto efficiency
- Estimation of QCD multi-jet \rightarrow no sensitivity yet on *hh* channel
- Pileup \rightarrow impact on E_T^{miss} and jet veto

$H \rightarrow \tau \tau \ (VBF)$

17

Comments:

- No mass peak \rightarrow use transverse mass.
- High backgrounds: WW, Wt, ttbar, $Z \rightarrow 2l$, bb,cc,QCD multijet

Evaluation of the sensitivity expected very soon.

• SEARCH FOR A STANDARD MODEL HIGGS

HIGGS PROPERTIES MEASUREMENTS

• SEARCH FOR A MSSM HIGGS

• CONCLUSIONS

WHICH PARAMETERS CAN WE MEASURE AT LHC?

1. Mass

2. Couplings to bosons and fermions

3. Spin and CP

- Angular distributions in the decay channels:

 $H \rightarrow ZZ(*) \rightarrow 4 \ell$, $H \rightarrow WW(*)$, $H \rightarrow \tau \tau VBF$ are sensitive to spin and CP eigenvalue

- $H \rightarrow \gamma \gamma$, if observed, excludes spin 1 (Yang's theorem)

Not for early data ... needs to find Higgs first !

4. Higgs self coupling

Possible channel: $gg \rightarrow HH \rightarrow WW WW \rightarrow \ell \nu jj \ell \nu jj$ Small signal cross sections, large backgrounds from tt, WW, WZ, WWW, tttt, Wtt,...

No significant measurement possible at LHC!

Very difficult at a possible SLHC (6000 fb⁻¹), limited to mass region around 160 GeV/c²

DIRECT MASS AND WIDTH MEASUREMENTS

'leptonic/γ resolution' for low masses

HIGGS COUPLINGS – 1

M.Duhrssen ATL-PHYS-2003-030

M.Duhrssen,S.Heinemeyer,H.Logan,D.Rainwater,G.Weiglein and D.Zeppenfeld Phys Rev D70,113009,2004 Warning: based on 'old' expectations

First step: measure σ^*BR in different channels with *almost* no assumptions (uncertainties comes from selection efficiencies , background evaluation)

HIGGS COUPLINGS – 2

Second step: give the measured σ^*BR as input in a global likelihood fit

Output: Higgs boson couplings, normalized to the WW-coupling

Relative couplings can be measured with a precision of ~20% (for 300 fb⁻¹)

• SEARCH FOR A STANDARD MODEL HIGGS

HIGGS PROPERTIES MEASUREMENTS

• SEARCH FOR A MSSM HIGGS

• CONCLUSIONS

MSSM HIGGS: WHAT WE KNOW FROM THEORY

- One doublet of Higgs pseudo-scalar fields is replaced with two:
 - One couples to up-fermions and has $vev=v_u$
 - One couples to down fermions and has $vev=v_d$
- 2X4-3=5 physical scalar fields/particles: h, H, A, H^{\pm}
- •Properties at tree level:
- fully defined by 2 free parameters: m_A , $tan \beta = v_u/v_d$
- CP-odd A:

```
never couples to Z or W;
```

decays to bb, $\tau\tau$ (and additionally tt for small tan β).

- CP-even h and H:

SM-like near their mass limits vs m_A ; at large $tan\beta$ enhanced coupling with down fermions, suppressed couplings to *W* and *Z*.

- H^{\pm} "strongly" couples to *tb* and τv
- All Higgs bosons are narrow (Γ<10GeV)

We choose the benchmark scenario m_h^{max} corresponding to maximal theoretically allowed region for m_h

$H \rightarrow \mu \mu$

$H \rightarrow \mu \mu$

$H \rightarrow \tau \tau \ (\tau \rightarrow ll)$

SELECTION.

•Trigger: isolated $\mu(e)$ with $p_T > 20$ (25)GeV || two isolated $e \parallel$ or one e & one μ

- **b-tagging** on at least one jet to suppress light jets
- Cuts on missing E_T , b momentum, lepton momentum, number
- *of jets* (<3) to reject Z and *tt* backgrounds
- Collinear approximation

Studies ongoing on hadronic τ decay mode Mass reconstruction as for SM VBF H→ ττ

CHARGED HIGGS SEARCHES

INVISIBLE HIGGS

• SEARCH FOR A STANDARD MODEL HIGGS

HIGGS PROPERTIES MEASUREMENTS

• SEARCH FOR A MSSM HIGGS

• CONCLUSIONS

CONCLUSIONS

- •Many SM Higgs channels have been studied in detail:
 - already good sensitivity to SM Higgs with few fb⁻¹
 - the full mass range is covered
- •MSSM Higgs sector covered in most of the m_A -tan β plane at 30fb⁻¹
- •Detailed Higgs properties studies will require a lot of statistics
- Analysis can be still improved!

FIND MORE DETAILS IN: ATLAS: CERN-OPEN 2008-020

THE STANDARD MODEL

PRESENT LIMITS

 \tilde{m}_{W}

• The electroweak measurements are sensitive to m_H through radiative corrections:

• Direct search at LEP2:

RECONSTRUCTION ISSUES

PRIMARY VERTEX

If the vertex is unknown, add 1.4 GeV to the mass resolution. Combine calorimeter and tracker informations!

- Calorimeter \rightarrow vertex position accuracy of 19 mm - Combining with the tracker information $\rightarrow \sim 0.1 \text{ mm}$ Calorimeter information is useful in case of pile-up or events with low tracks multiplicity.

- No pile-up

1033 cm-2s-1

2*1033cm2s-1

Zrec-Ztrue

0.12

0.1

0.08

0.06

0.04

0.02

ATLAS preliminary

Only calorimeter

-100-80 -60 -40 -20 0 20 40 60 80 100

0.14

0.1

0.08

0.06

0.04

0.02

0.12 ATLAS

CONVERSIONS

- ~50% of the events with at least one converted γ !
- ad hoc energy calibration required in late conversions;
- conversion vertex used in computation of the direction;
- used for gamma-jet background estimation.

Also one reconstructed track conversions!

I.Koletsou CERN-THESIS-2008-047, LAL-08-38

MATERIAL BEFORE CALORIMETER

THE REDUCIBLE *y* jet BACKGROUND

On a selected sample of conversions we can measure the ratio p_T / E_T

ISOLATION & IMPACT PARAMETER

Reducible backgrounds have activity around *leptons from b-decay*

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

μ

μ

ł

Normalized calorimetric and track isolation ($\Delta R=0.2$) for the signal $(m_{\mu} = 130)$ and the Zbb and tt backgrounds in the 4μ channel.

Transverse impact parameter significance in signal and reducible background events.

EFFICIENCY & RESOLUTION

Selection efficiency as a function of the Higgs mass, for each of the three decay channels.

Mass resolution as a function of the Higgs mass. Open circles denote the resolution Z mass constraint improves resolution.

INVARIANT MASS DISTRIBUTIONS

Figure 7: Central jet veto performance in the presence of varying levels of pileup for signal and background samples.

*t*t*H*→*t*t*b*b

- Trigger requires: high p_T isolated lepton & E_T^{miss} to identify the W
- b-tagging is crucial

Three approaches:

- Cut based analysis
- Likelihood analysis using invariant masses, angles and distances between jets
- Analysis with mass-constrained fit to the measured missing energy, jet and lepton four momenta (to reduce combinatorics).

45

ANGULAR DIST RIBUTIONS IN $H \rightarrow ZZ \rightarrow 4l$

$$F(\phi) = 1 + \alpha \cdot \cos(\phi) + \beta \cdot \cos(2\phi) + \beta \cdot \cos($$

$$G(\theta) = T \cdot (1 + \cos^2(\theta)) + L \cdot \sin^2(\theta)$$

$$R := \frac{L - T}{L + T}$$

C.P.Buszello,I.Fleck,P.Marquard and J.J. van der Bij Eur Phys J C32,209,2004

ANOMALOUS HIGGS COUPLINGS IN VBF

CPE and **CPO** anomalous couplings:

- with 10 fb⁻¹ can be excluded at 5σ in $H \rightarrow WW \rightarrow llvv$ for $m_H = 160 \text{ GeV}$.
- with 30 fb⁻¹ can be excluded at 2σ in $H \rightarrow \tau \tau$ for $m_H = 120$ GeV.

47

INVISIBLE HIGGS: VBF TOPOLOGY

SELECTION:

- •Tag jets $p_T>40$, $|\eta|<5$, η_1^* $\eta_2<0$, $\Delta\eta>4.4$
- •Require $\mathbf{E}_{\mathbf{T}}$ miss \rightarrow not expected in QCD jets
- •cut on jet invariant mass 1200GeV → reject QCD dijets which are softer
- •Missing transverse energy isolation variable → reduce effect of cracks
- •Reject W+jets and Z+jets cutting on hard p_T leptons
- •Central jet veto
- ϕ_{ii} (in background also jet from radiative processes are present: $q\overline{q} \rightarrow gV$ and $qg \rightarrow qV$)

The ATLAS experiment: 1900 scientists, 165 institutes, 35 countries!

CALORIMETER

MAGNETS

The ATLAS magnet coils

2 endcap toroids: 1T, 8coils, 20.5kA Each in its own cryostat.

Solenoid: 2T, 7.7kA 2.4m bore, 5.3m length. Field measured to <10⁻⁴

Barrel toroid: 0.5T, 8coils, 20.5 kA,7000m³ field volume

MUONS DETECTOR

Stand-alone momentum resolution ΔpT/pT < 10% up to 1 TeV

~1200 MDT precision chambers for track reconstruction (+ CSC)

FIRST BEAM-SPLASH EVENT

Updated MSSM scan for different benchmark scenarios

Benchmark scenarios as defined by M.Carena et al. (h mainly affected)

ATLAS preliminary, 30 fb^{-1,} 5σ discovery

MHMAX scenario $(M_{SUSY} = 1 \text{ TeV/c}^2)$ maximal theoretically allowed region for m_h

Nomixing scenario $(M_{SUSY} = 2 \text{ TeV/c}^2)$ (1TeV almost excl. by LEP) small $m_h \rightarrow$ difficult for LHC

Gluophobic scenario ($M_{SUSY} = 350 \text{ GeV/c}^2$) coupling to gluons suppressed (cancellation of top + stop loops) small rate for g g \rightarrow H, H $\rightarrow \gamma\gamma$ and Z \rightarrow 4 ℓ

Small α **scenario** (M_{SUSY} = 800 GeV/c²) coupling to b (and t) suppressed (cancellation of sbottom, gluino loops) for large tan β and M_A 100 to 500 GeV/c²

140

small differences ~ understood

NOTE: differences in K factors and use of categories might explain the different significance in number counting?

SELECTION AND BACKGROUNDS

- No mass peak \rightarrow use transverse mass.
- Reconstruction:
 - Trigger : single or double lepton selection $1\mu 20i$ or 1e25i;
 - Offline: select events with exactly two isolated (tracking and calorimeter) opposite sign primary leptons and E_T^{miss} .
 - Specific reconstructions for different channels
- **High backgrounds:** WW, Wt, ttbar, $Z \rightarrow 2l$, bb,cc,QCD multijet

		∖ b
Process	Cross-section(pb)	X,
$gg \rightarrow H \rightarrow WW \ (M_H = 170 \text{ GeV})$	19.418	
$\operatorname{VBF} H \to WW \ (M_H = 170 \text{ GeV})$	2.853	a s
$\operatorname{VBF} H \to WW \ (M_H = 300 \text{ GeV})$	0.936	ACC ACC
qq/qg ightarrow WW	111.6	65
gg ightarrow WW	5.26	
$pp \rightarrow t\overline{t}$	833	_u w
$Z \rightarrow \tau \tau + jets$	2015	
W+jets	20510	1001

The challenge: precise knowledge of the backgrounds.

62

UNSOLVED QUESTIONS

Experiments are trying to answer!

PRIMARY VERTEX RECONSTRUCTION

If the vertex is unknown, add 1.4 GeV to the mass resolution.

Tracker and calorimeter informations are combined:

- Using calorimeter longitudinal segmentation and pre-shower strips \rightarrow vertex position accuracy is **19mm** (17mm when using conversions).
- Combining with the tracker information $\rightarrow \sim 0.1$ *mm*
- Calorimeter information is useful in case of pile-up or events with low tracks multiplicity.

BACKGROUNDS

Backgrounds:

- $qq,gg \rightarrow ZZ^{(*)} \rightarrow 4l \ (l=e,m,t)$
- $qq \rightarrow Zbb \rightarrow 4l$
- $qq \rightarrow Zbb \rightarrow 3l$
- $qq,gg \rightarrow tt$
- $qq,gg \rightarrow WZ \rightarrow 3l$
- $Z \rightarrow 2l + X$

Background will be estimated in sidebands → low systematic uncertainties

•Look to the Z with first data to understand lepton reconstruction and detectors response.

• $Z \rightarrow ee$ mass peak is affected by electron bremsstrahlung.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.