

Why the cNMSSM? Low energy phenomenology and possible signatures at the LHC

Ana M. Teixeira (LPT & IST)

GDR SUSY LAL, 3 December 2008

In collaboration with A. Djouadi and U. Ellwanger, arXiv:0803.0253 [hep-ph] 0811.2699 [hep-ph]

The Next-to-Minimal Supersymmetric Standard Model By adding a singlet superfield \hat{S} to the MSSM \Rightarrow NMSSM

\star Elegant solution to the μ -problem of the MSSM

$$\mu \, \hat{H}_{u} \, \hat{H}_{d} \quad \rightarrow \quad \lambda \, \hat{S} \, \hat{H}_{u} \, \hat{H}_{d}$$

 $\Rightarrow \text{ dynamically generated } \mu: \quad \langle S \rangle \sim \mathcal{O}(M_{\text{SUSY}}) \quad \rightsquigarrow \quad \mu_{\text{eff}} = \lambda \langle S \rangle$

 \Rightarrow Scale-invariant superpotential: EW, SUSY scale only appearing via \mathcal{L}_{soft}

★ NMSSM

- \rightsquigarrow Simplest extension of the SM where the only scale is M_{SUSY}
- \rightsquigarrow Original SUSY/SUGRA extensions of the SM of this type [Fayet, Nilles, ...]

NMSSM new features

 $\mathbf{W} = Y_u \,\hat{H}_u \,\hat{Q} \,\hat{u} + Y_d \,\hat{H}_d \,\hat{Q} \,\hat{d} + Y_e \,\hat{H}_d \,\hat{L} \,\hat{e} - \mathbf{\lambda} \,\hat{S} \,\hat{H}_u \hat{H}_d + \frac{1}{3} \mathbf{\kappa} \hat{S}^3$

 $-\mathcal{L}_{\text{soft}}^{\text{Higgs}} = m_{H_i}^2 H_i^* H_i + m_S^2 S^* S + \left(-\lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \text{H.c.}\right)$

Neutralino sector:

5 Majorana fermions
$$(\chi_{1-5}^0)$$

 $\tilde{\chi}_1^0 = N_{11}\tilde{B}^0 + N_{12}\tilde{W}_3^0 + N_{13}\tilde{H}_d^0 + N_{14}\tilde{H}_u^0 + N_{15}\tilde{S}$

Neutral Higgs sector: $\begin{cases} 2 \text{ pseudoscalar } (a_1^0, a_2^0) \text{ and } 3 \text{ scalar bosons } (h_1^0, h_2^0, h_3^0) \\ h_1^0 = S_{11}H_d^0 + S_{12}H_u^0 + S_{13}S \end{cases}$

⇒ NMSSM: Richer, more complex phenomenology

LEP and the NMSSM

★ In the NMSSM less severe "Higgs - little fine tuning problem"

Theoretically higher upper bound on $m_{h_1^0}$

Additional contributions to $m_{h_1^0}$, low $\tan\beta$ regime $\Rightarrow m_{h_1^0} \sim 145 \text{ GeV}$

Experimentally "invisible" h_1^0 (escaped LEP detection)

⇒ NMSSM light Higgs (m_{h₁⁰} ≤ 114 GeV) still allowed by LEP data:
 (i) Z - Z - h₁⁰ coupling is heavilly suppressed
 ~ singlet dominated h₁⁰; SM-like h₂⁰

(ii) $m_{a_1^0} \lesssim 11 \text{ GeV}$ allowing for $m_{h_1^0} \lesssim 86 \text{ GeV}$ $\rightsquigarrow \text{SM-like } h_1^0 \text{ dominant decay } h_1^0 \rightarrow a_1^0 a_1^0;$ $\rightsquigarrow \text{Forbidden } a_1^0 \rightarrow b \bar{b} \text{ only } a_1^0 \rightarrow 2 \tau$

NMSSM with universal soft terms at GUT scale

Supergravity mediated ⇒ flavour blind (universal), CP conserving, SUSY soft breaking terms! (at corresponding mass scale)

mSUGRA-like NMSSM: $M_i = M_{1/2}$; $(m_0^{\tilde{F},\phi})_{ij} = m_0$; $(A_0^{\tilde{F},\phi})_{ij} = A_0$ $\Rightarrow m_{H_u} = m_{H_d} = m_S = m_0, A_\lambda = A_\kappa = A_0$

cNMSSM: $M_{1/2}, m_0, A_0, \lambda, \kappa \Rightarrow 5$ continuous parameters

Analogous to the cMSSM: $M_{1/2}, m_0, A_0, \mu, B\mu$

- \star Requiring correct $M_Z \Leftrightarrow$ 4 parameters
- * Practical purposes (RGE's, numerics, ...) $\kappa \nleftrightarrow \tan \beta$

constrained NMSSM: $M_{1/2}, m_0, A_0, \lambda$

NMSSMTools [Ellwanger, Hugonie]

Constraining the cNMSSM: scalar potential & LEP

\bigstar Phenomenologically acceptable minimum of Higgs potential: $s = \langle S \rangle \neq 0$

 $V_{\rm Higgs} \sim \kappa^2 \, s^4 + \tfrac{2}{3} \kappa \, A_\kappa \, s^3 + m_S^2 \, s^2 + \dots$

* Non vanishing s: $\Rightarrow m_0 \lesssim \frac{1}{3} |A_0|$

cMSSM: low m_0 disfavoured (charged slepton LSP) cNMSSM: low m_0 required to generate $\langle S \rangle$; singlino LSP

* Absence of pseudoscalar tachyons: $\Rightarrow A_{\kappa} \sim A_0 < 0$

\bigstar LEP constraints \rightsquigarrow **upper bound** on λ : typically $\Rightarrow \lambda \leq 0.02$

 $\star (g-2)_{\mu}$: favours low $M_{1/2}$ regime $M_{1/2} \lesssim 1$ TeV

Constraining the cNMSSM: dark matter

★ Comply with WMAP constraints on the relic density

$$0.094 \lesssim \Omega_{\chi_1^0} h^2 \lesssim 0.136 \qquad (\text{ at } 2\,\sigma)$$

MicrOmegas [Belanger et al]

* "Assisted" $\tilde{\tau}_1$ annihilation: nearly degenerate LSP and NLSP

 $m_{\chi_S}^2 \sim m_{\tilde{\tau}_R}^2 \quad \Rightarrow m_0 \lesssim \frac{1}{10} M_{1/2} \quad \text{small/vanishing } m_0$

small A_0 , determined by $M_{1/2} \implies A_0 \sim -\frac{1}{4} M_{1/2}$

* Diluting LSP density: LSP-NLSP thermal equilibrium

for very small $\lambda \rightsquigarrow$ decoupled LSP $\Rightarrow \lambda \gtrsim 10^{-5}$

 $\star \sigma_{
m annih}$ decreases with $m_{
m NLSP} \propto M_{1/2} \Rightarrow M_{1/2}$ not too large ($\lesssim 2-3$ TeV)

The allowed cNMSSM parameter space

★ Allowed parameter space: "line" in $[M_{1/2}, A_0]$ plane !

Small $m_0 \Rightarrow$ cNMSSM: cNMSSM ($M_{1/2}$)

The allowed cNMSSM parameter space

★ Allowed parameter space: "lines" in $[M_{1/2}, A_0]$ plane ! Small $m_0 \Rightarrow$ cNMSSM: cNMSSM $(M_{1/2})$

Higgs spectrum

"Cross-over": small mass splitting; similar components; similar couplings

► Decays: $\begin{cases} \text{SM-like } h_{1,2}^0: b\bar{b} \ (70\%); & \text{BR}(h_{1,2}^0 \to \gamma\gamma) \approx \text{BR}^{\text{SM}} \approx 2 \times 10^{-3} \\ \text{Singlet like: } b\bar{b} \text{ and } \tau^+\tau^- \ (\text{as well as } h_3^0, a_2^0, h^\pm) \\ \text{Higgs-to-Higgs: possible but NOT typical} \end{cases}$

Explaining LEP?

Back to LEP2: combined results from all Higgs searches $(e^+ e^- \rightarrow h Z; h \rightarrow b\bar{b})$

cNMSSM (low $M_{1/2}$): constrained model accounting for LEP!

Sparticle spectrum

► Neutralino sector:

Singlino LSP - nearly degenerate with $\tilde{\tau}_1$ Bino-like χ_2^0 ; Wino-like χ_3^0 ; Higgsino-like $\chi_{4,5}^0$: $M_{\chi_{4,5}^0} \approx \mu_{eff}$

Squarks & gluinos:

Gluino heavier than all squarks and sleptons $(m_0 \text{ is small})$

cNMSSM at the LHC: sparticle decay chains

$$\star \quad \tilde{\boldsymbol{g}} \to \tilde{\boldsymbol{q}} q \qquad (m_{\tilde{g}} \gtrsim m_{\tilde{q}})$$

$$\star \quad \tilde{q} \to \chi^{0(\pm)} q (q') \begin{cases} \tilde{q}_L \to \chi^0_3 q \quad (33\%) \\ \tilde{q}_L \to \chi^{\pm}_1 q' \quad (66\%) \end{cases} \qquad \tilde{q}_R \to \chi^0_2 q$$

$$\star \quad \tilde{l}_{L} \to \chi_{2}^{0} l; \qquad \tilde{l}_{R} \to l \, \tilde{\tau}_{1} \, \tau \, (\gtrsim 99\%)$$

- $\star \quad \boldsymbol{\chi_3^0}(\boldsymbol{\chi_1^\pm}) \to \tilde{\boldsymbol{l}} \, l^{(\prime)} \, (\sim 50\%) \, ; \qquad \boldsymbol{\chi_3^0}(\boldsymbol{\chi_1^\pm}) \to \tilde{\boldsymbol{\tau_1}} \, \tau \,, \, \tilde{\boldsymbol{\nu_\tau}} \, \nu_\tau \, (\sim 50\%) \,$
- $\star \quad \chi_2^{\mathbf{0}} \to \tilde{\tau}_1 \ \tau$

cNMSSM: Almost all sparticle decay chains contain $ilde{ au}_1$ NLSP !

 \star $ilde{ au}_1 o \chi_1^{m 0}\, au$; stable $\chi_1^{m 0}$

cNMSSM: subdominant cascade decays with lepton final states ...

cNMSSM "smoking gun": possibly displaced vertices cNMSSM: singlino LSP (χ_1^0), mostly right-handed NLSP ($\tilde{\tau}_1$) \Rightarrow Long-lived $\tilde{\tau}_1$!

$$\Gamma(\tilde{\tau}_{1} \to \chi_{1}^{0} \tau) \approx \lambda^{2} \frac{\sqrt{\Delta m^{2} - m_{\tau}^{2}}}{4\pi m_{\tilde{\tau}_{1}}} \left(\alpha \Delta m - \rho \, m_{\tau}\right) \qquad \qquad \Delta m \equiv m_{\tilde{\tau}_{1}} - m_{\chi_{1}^{0}}; \\ \alpha(M_{1/2}), \rho(M_{1/2}) \in [10^{-2}, 10^{-4}]$$

400 600 800 1000 1200 1400 1000 1000 Realistic $l_{\tilde{\tau}_1}$ in the lab frame $\beta_{\tau} = 0.95$ 100 100 $\Rightarrow \beta_{\tilde{\tau}_1} = v_{\tilde{\tau}_1}/c$ ($\tilde{\tau}_1$ production) $\lambda = 10^{-4}$ 10 10 I_{τ} (mm) $l_{\tilde{\tau}_1} = \frac{\hbar c}{\Gamma(\tilde{\tau}_1 \to \chi_1^0 \tau)} \sqrt{\frac{\beta_{\tilde{\tau}_1}^2}{1 - \beta_{\tilde{\tau}_1}^2}}$ 1 $\beta_{\tau} = 0.7$ 0.1 0.1 0.01 0.01 GMSB ATLAS studies: $\beta_{\tilde{\tau}_1} \gtrsim 0.7$ $\lambda = 10^{-3}$ 0.001 0.001 400 600 800 1000 1200 1400 $M_{1/2}$ (GeV)

cNMSSM: $\tilde{\tau}_1$ length of flight $\rightsquigarrow \mathcal{O}(\text{few centimeters})$

cNMSSM prospects for the LHC

Sparticle production:

dominant production $\rightsquigarrow \tilde{q}\tilde{g}, \tilde{q}\tilde{q}$ and $\tilde{q}\tilde{q}^*$ Low $M_{1/2}$ regime: $\sigma \sim 0.5$ pb $\mathcal{L} = 100 \text{ pb}^{-1} \Rightarrow 10^4 - 10^5$ events

Simplest decay cascade: $\tilde{q}_R \rightarrow \chi_2^0 q$; $\chi_2^0 \rightarrow \tilde{\tau}_1 \tau$; $\tilde{\tau}_1 \rightarrow \chi_1^0 \tau$ 3 jets $/\tilde{q}_R$ (one hard quark + 2 τ jets) & long lived $\tilde{\tau}_1$ \Rightarrow complicated measurements of sparticle spectra

Higgs production: $h_{1,2}^{\text{SM-like}} \rightsquigarrow \text{gluon-gluon & vector boson fusion} \quad h_{1,2} \rightarrow \gamma \gamma$ Higgs production:heavier Higgses \rightsquigarrow associated $b\overline{b}(tb)$ low $M_{1/2}$ singlet-like \rightsquigarrow inaccessible

Higgs cross-over region: two nearly degenerate, same couplings states sum behaves as ONE SM Higgs - resolve $\gamma\gamma$ peak?

Concluding remarks & outlook

- Why the NMSSM?? simple and very attractive SUSY extension of the SM A lot of work to be done (especially experimental simulations)!
- ► cNMSSM allowed parameter space: described by ONE parameter! Very low m_0 , small A_0 values, and $M_{1/2} \lesssim 1$ TeV; $\tan \beta \sim 30$ Satisfy observed Higgs excesses at LEP and $(g-2)_{\mu}$ deviation from SM
- cNMSSM different spectra from cMSSM!

 $m_{\tilde{g}} \gtrsim m_{\tilde{q}}$; $\tilde{\tau}_1$ in all decay cascades (possibly long lived)

- **Dark matter** detection prospects: well below experimental capabilities ...
- **Testable** at LHC, but **ILC required** for precision measurements

Additional slides

NMSSM: $\tilde{\chi}^0$ and scalar Higgs mass matrices

CP-even Higgs

$$\mathcal{M}_{S,11}^{2} = M_{Z}^{2} \cos^{2} \beta + \lambda s \tan \beta (A_{\lambda} + \kappa s)$$

$$\mathcal{M}_{S,22}^{2} = M_{Z}^{2} \sin^{2} \beta + \lambda s \cot \beta (A_{\lambda} + \kappa s)$$

$$\mathcal{M}_{S,33}^{2} = 4\kappa^{2}s^{2} + \kappa A_{\kappa}s + \frac{\lambda}{s}A_{\lambda}v_{1}v_{2}$$

$$\mathcal{M}_{S,12}^{2} = \left(\lambda^{2}v^{2} - \frac{M_{Z}^{2}}{2}\right)\sin 2\beta - \lambda s (A_{\lambda} + \kappa s)$$

$$\mathcal{M}_{S,13}^{2} = 2\lambda^{2}v_{1}s - \lambda v_{2} (A_{\lambda} + 2\kappa s)$$

$$\mathcal{M}_{S,23}^{2} = 2\lambda^{2}v_{2}s - \lambda v_{1} (A_{\lambda} + 2\kappa s)$$

$$\begin{split} \mathcal{M}_{P,11}^2 &= \frac{2\lambda s}{\sin 2\beta} \left(\kappa s + A_\lambda \right) \\ \mathcal{M}_{P,22}^2 &= \lambda \left(2\kappa + \frac{A_\lambda}{2s} \right) v^2 \sin 2\beta - 3\kappa A_\kappa s \\ \mathcal{M}_{P,12}^2 &= \lambda v \left(A_\lambda - 2\kappa s \right) \end{split}$$

$$a_i^0 = \mathbf{P}_{ij} P_j^0$$

CP-odd Higgs

$$h_a^0 = S_{ab} H_b^0$$

Neutralino Sector

$$\mathcal{M}_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -M_Z \sin \theta_W \cos \beta & M_Z \sin \theta_W \sin \beta & 0 \\ 0 & M_2 & M_Z \cos \theta_W \cos \beta & -M_Z \cos \theta_W \sin \beta & 0 \\ -M_Z \sin \theta_W \cos \beta & M_Z \cos \theta_W \cos \beta & 0 & -\lambda s & -\lambda v_2 \\ M_Z \sin \theta_W \sin \beta & -M_Z \cos \theta_W \sin \beta & -\lambda s & 0 & -\lambda v_1 \\ 0 & 0 & -\lambda v_2 & -\lambda v_1 & 2\kappa s \end{pmatrix}$$

Ranges

Additional phenomenology

Tables: Spectra

	P1	P2
$M_{1/2}~({ m GeV})$	500	1000
$m_0~({ m GeV})$	0	0
A_0 (GeV)	-122	-263
aneta	26.7	32.2
$\mu_{ m eff}$ (GeV)	640	1185
M_2 (GeV)	390	790
$m_{h_1^0}^{}$ (GeV)	86	119
$m_{h_2^0}^{}$ (GeV)	116	187
$m_{h_3^0}$ (GeV)	610	1073
$m_{a_1^0}$ (GeV)	149	323

	P1	P2
$M_{1/2}~({ m GeV})$	500	1000
$m_{\chi^0_1}$ (GeV)	122	264
$m_{\chi^0_2}$ (GeV)	206	427
$m_{\chi^0_3}^{}$ (GeV)	388	802
$m_{\chi^0_{4,5}}^{}$ (GeV)	645	1190
$m_{\chi^{\pm}_1}$ (GeV)	388	801
$m_{\chi^\pm_2}$ (GeV)	658	1198
$m_{\widetilde{g}}$ (GeV)	1150	2187
$m_{ ilde{u}_L}$ (GeV)	1044	1973
$m_{ ilde{u}_R}$ (GeV)	1007	1895
$m_{ ilde{t}_1}$ (GeV)	795	1539
$m_{ ilde{t}_2}$ (GeV)	997	1810
$m_{ ilde{b}_1}$ (GeV)	931	1760
$m_{ ilde{b}_2}$ (GeV)	983	1817
$m_{ ilde{e}_L}$ (GeV)	334	654
$m_{ ilde{e}_R}$ (GeV)	190	370
$m_{\tilde{\nu}_l}$ (GeV)	325	650
$m_{ ilde{ au}_1}$ (GeV)	127	269
$m_{ ilde{ au}_2}$ (GeV)	343	647
$m_{ ilde{ u}_{ au}}$ (GeV)	318	631

	P1	P2 ′
$M_{1/2}$ (GeV)	500	1000
m_0 (GeV)	40	107
A_0 (GeV)	-137	-327
aneta	30.2	38.4
$\mu_{ m eff}$ (GeV)	642	1192
M_2 (GeV)	390	791
$m_{h_1^0}^{}$ (GeV)	64	116
$m_{h_2^0}^{}$ (GeV)	116	127
$m_{h_3^0}^{}$ (GeV)	588	989
$\begin{bmatrix} m_{a_1^0} & (\text{GeV}) \end{bmatrix}$	149	333
$m_{\chi^0_1}$ (GeV)	107	226
$m_{ ilde{ au}_1}$ (GeV)	112	235

Tables: Production and Decays

-		
σ (pb)	P1	P2
$\tilde{g} \; ilde{g}$	9.5×10^{-2}	2.14×10^{-4}
$ ilde{g} ilde{q}$	0.668	4.28×10^{-3}
$ ilde{q} ilde{q}$	0.436	9.21×10^{-3}
$\tilde{q} \tilde{q}^*$	0.221	1.64×10^{-3}
$\tilde{t}_1 \tilde{t}_1^*$	3.69×10^{-2}	2.63×10^{-4}
$\tilde{l}_L \tilde{l}_L^*$	3.4×10^{-3}	1.62×10^{-3}
$\tilde{l}_R \tilde{l}_R^*$	1.17×10^{-2}	8.87×10^{-4}
$ ilde{ u}_l ilde{ u}_l^*$	3.58×10^{-3}	1.53×10^{-4}
$ ilde{ au}_1 ilde{ au}_l^*$	4.8×10^{-2}	3.46×10^{-3}
$\chi^0_2\chi^0_2$	1.1×10^{-3}	6.22×10^{-5}
$\chi^0_2\chi^0_3$	1.73×10^{-4}	8.67×10^{-6}
$\chi_2^0 \chi_1^\pm$	5.37×10^{-4}	6.53×10^{-5}
$\chi^0_3\chi^0_3$	1.79×10^{-3}	5.74×10^{-5}
$\chi^0_3\chi^\pm_1$	6.51×10^{-2}	7.49×10^{-3}
$ \chi_1^+\chi_1^- $	3.53×10^{-2}	1.17×10^{-3}

BR (%)	P1	P2
$ \qquad \qquad$	17.7	14.4
$\tilde{g} \to \tilde{q}_R \bar{q}$	33.6	27.5
$\tilde{g} ightarrow ilde{b}_1 ar{b}$	16.5	12.8
$\tilde{g} \to \tilde{b}_2 \bar{b}$	10.9	10.3
$\tilde{g} \to \tilde{t}_1 \bar{t}$	21.2	22.4
$\tilde{g} \to \tilde{t}_2 \bar{t}$	_	12.5
$\tilde{q}_L \to \chi^0_3 q$	31.7	32.3
$ \qquad \qquad \tilde{q}_L \to \chi_1^{\pm} q' $	62.7	64.3
$\tilde{q}_R \to \chi_2^0 q$	99.7	99.9
$ ilde{l}_L o \chi^0_2 l$	100	100
$\left \tilde{l}_R \to l \tilde{\tau}_1 \tau \right $	\gtrsim 95	\gtrsim 99
$\widetilde{ u}_l ightarrow \chi_2^0 \overline{ u_l}$	100	100
$\tilde{\nu}_{\tau} \to \chi_2^0 \nu_{\tau}$	13.8	6.8
$ \tilde{\nu}_{\tau} \to \tilde{\tau}_1 W $	86.2	93.2

BR (%)	P1	P2
$\chi_2^0 \to \tilde{\tau}_1 \tau$	88.3	74.3
$\chi_2^0 \to \tilde{l}_R l$	11.7	25.7
$\chi_3^0 \to \tilde{l}_L l$	22.1	28.4
$\chi_3^0 o ilde{ u}_l u_l$	27.1	29.2
$\chi_3^0 o ilde{ au}_1 au$	24.9	8.8
$\chi_3^0 o ilde{ au}_2 au$	6.9	14.8
$\chi_3^0 \to \tilde{\nu}_\tau \nu_\tau$	16.9	18.3
$\chi_1^{\pm} \to \tilde{\nu}_l \ l$	29.3	29.9
$\chi_1^{\pm} \to \tilde{l} \nu_l$	20.8	27.8
$\chi_1^{\pm} \to \tilde{\nu}_\tau \ \tau$	18.4	18.9
$\chi_1^{\pm} \to \tilde{\tau}_1 \nu_{\tau}$	24	8.7
$\chi_1^{\pm} \to \tilde{\tau}_2 \nu_\tau$	-	14.3