The Munich Compact Light Source – a laboratory-scale synchrotron facility for biomedical research

Martin Dierolf

Technical University of Munich (TUM)

Department of Physics & Munich School of BioEngineering

Chair of Biomedical Physics

LAL Seminar,

Orsay, March 26th 2019

Chair of Biomedical Physics

www.e17.ph.tum.de

Research portfolio at Chair of Biomedical Physics

Biomedical Applications: cancer detection, mammography, osteoporosis, atherosclerosis, lung imaging (emphysema), virtual histology, ...

Applications Spectral CT

Dark-field Tomography

Dark-field Radiography

Small-animal research

TensorCT

X-ray Physics: Imaging Technology & Algorithms

Staining-based nanoCT & microCT

Munich Compact Light Source (MuCLS)

Basic Research

www.e17.ph.tum.de

Outline

The MuCLS:

- What is the MuCLS?
- How does it perform?
- How do we operate?

Biomedical research at the MuCLS:

- experimental setups
- selected applications

Figure adapted from Eggl, Ph.D. thesis, TUM (2017)

Compact Light Source

Figure adapted from Eggl, Ph.D. thesis, TUM (2017)

Figure adapted from Eggl, Ph.D. thesis, TUM (2017)

The X-ray source of the MuCLS

The X-ray source of the MuCLS – electron gun

The X-ray source of the MuCLS – LINAC

The X-ray source of the MuCLS – transport line

The X-ray source of the MuCLS – storage ring

The X-ray source of the MuCLS – storage ring

The X-ray source of the MuCLS – optical cavity

ПΠ

MuCLS: design decisions to optimize luminosity

maximize collision frequency

$$\mathcal{L}_0 = f_{\rm coll} \frac{N_l N_e}{4\pi \sigma_r^2}$$

maximize electron bunch charge

maximize laser pulse power

maximize collision frequency \rightarrow storage ring for electron \rightarrow optical cavity for laser photons \rightarrow match round-trip time $\rightarrow f_{coll} = 65 \text{ MHz}$

maximize electron bunch charge

maximize laser pulse power

$$\mathcal{L}_0 = f_{\rm coll} \frac{N_l N_e}{4\pi \sigma_r^2}$$

maximize collision frequency \rightarrow storage ring for electron \rightarrow optical cavity for laser photons \rightarrow match round-trip time $\rightarrow f_{coll} = 65 \text{ MHz}$

maximize electron bunch charge

 \rightarrow start with low-emittance photo injector \rightarrow refill with 25 Hz

maximize laser pulse power

$$\mathcal{L}_0 = f_{\rm coll} \frac{N_l N_e}{4\pi \sigma_r^2}$$

maximize collision frequency \rightarrow storage ring for electron \rightarrow optical cavity for laser photons \rightarrow match round-trip time $\rightarrow f_{coll} = 65 \text{ MHz}$

maximize electron bunch charge

 \rightarrow start with low-emittance photo injector \rightarrow refill with 25 Hz

maximize laser pulse power

- \rightarrow enhancement cavity
- \rightarrow from ~20 W input to >300 kW stored

$$\mathcal{L}_0 = f_{\rm coll} \frac{N_l N_e}{4\pi \sigma_r^2}$$

maximize collision frequency \rightarrow storage ring for electron \rightarrow optical cavity for laser photons \rightarrow match round-trip time $\rightarrow f_{coll} = 65 \text{ MHz}$

maximize electron bunch charge

 \rightarrow start with low-emittance photo injector \rightarrow refill with 25 Hz

maximize laser pulse power

- \rightarrow enhancement cavity
- \rightarrow from ~20 W input to >300 kW stored

- \rightarrow tight focusing of colliding beams
- \rightarrow 25 Hz refill preserves high quality of electron bunch

$$\mathcal{L}_0 = f_{\rm coll} \frac{N_l N_e}{4\pi \sigma_r^2}$$

Outline

The MuCLS:

- What is the MuCLS?
- How does it perform?
- How do we operate?

Biomedical research at the MuCLS:

- experimental setups
- selected applications

X-ray spectra at exemplary energies

Martin Dierolf | MuCLS - a laboratory-scale synchrotron facility for biomedical research | martin.dierolf@tum.de

Characterization of source parameters & stability

ПП

work by Elena Eggl

MuCLS source parameters

Parameters measured 03 / 2017, after upgrade of laser amplifier system

X-ray energy	15 keV	25 keV	35 keV
Flux	0.8 x 10 ¹⁰ ph/s	2.1 x 10 ¹⁰ ph/s	3.3 x 10 ¹⁰ ph/s
source sizes (h x v, rms)	51 x 46 µm²	48 x 46 µm²	43 x 40 µm²
Source position stability (std. dev.)	1 µm	1 µm	1 µm

Parameters before upgrade, see Eggl et al., J. Sync. Rad. 23, 1137 (2016)					
X-ray energy	15 keV	25 keV	35 keV		
Flux	0.4 x 10 ¹⁰ ph/s	1.0 x 10 ¹⁰ ph/s	1.8 x 10¹º ph/s		

values averaged over **10 min**, 90 min after starting an energy change

MuCLS source parameters

measured at 35 keV

ПП

Characterization of source stability

work by Elena Eggl

Eggl, Ph.D. thesis, TUM (2017) http://mediatum.ub.tum.de?id=1360604

Improve stability: active source position feedback

- \rightarrow previous characterization used imaging detector
- → but: want to run characterization & feedback in parallel with experiments work by Benedikt Günther

P.

Improve stability: active source position feedback

- \rightarrow intercept lower part of X-ray beam with customized detector
- \rightarrow permanent knife-edge imaging + feedback

Günther et al., submitted

work by Benedikt Günther

Summary of MuCLS parameters

Performance parameters (as of 3/2017)

Electron beam	
Electron energy	25-45 MeV
Ring circumference	4.6 m
Repetition rate	64.91 MHz (single bunch)
Bunch length	50 ps / 1.5 cm (rms)
Bunch charge	250 pC (max. 500 pC)
Re-injection rate	25 Hz
Focus spot size	45 μ m $ imes$ 45 μ m
Laser & Laser Cav	/ity
Laser & Laser Cav Laser wavelength	/ity 1064 nm
Laser & Laser Cav Laser wavelength Cavity Length	/ity 1064 nm 9.2 m
Laser & Laser Cav Laser wavelength Cavity Length Repetition rate	/ity 1064 nm 9.2 m 64.91 MHz (two pulses)
Laser & Laser Cav Laser wavelength Cavity Length Repetition rate Pulse length	/ity 1064 nm 9.2 m 64.91 MHz (two pulses) 25-30 ps (FWHM)
Laser & Laser Cav Laser wavelength Cavity Length Repetition rate Pulse length Drive laser power	/ity 1064 nm 9.2 m 64.91 MHz (two pulses) 25-30 ps (FWHM) 14 W
Laser & Laser Cav Laser wavelength Cavity Length Repetition rate Pulse length Drive laser power Stored laser power	/ity 1064 nm 9.2 m 64.91 MHz (two pulses) 25-30 ps (FWHM) 14 W up to 140 kW

Eggl, Ph.D. thesis, TUM (2017)
http://mediatum.ub.tum.de?id=1360604

X-ray beam	
Energy range	11-35 keV
Source size	$<$ 45 μ m $ imes$ 45 μ m
Divergence	4 mrad
Energy bandwidth	3-5%
Brilliance (35 keV)	$0.6 \cdot 10^{10} \frac{\text{photons/s}}{\text{mrad}^2 \text{ mm}^2 0.1\% \text{ RW}}$
Flux (35 keV)	$1 \cdot 10^{10}$ photons/s
Flux scaling	$\propto E_x/E_{0x}$ (E_{0x} = 35 keV)

Table 3.1.: Technical specifications for the MuCLS.

Summary of MuCLS parameters

Performance parameters (as of 3/2017)

		No. Alternation of the second			
Electron beam		X-ray bea	am		
Electron energy	25-45 MeV	Energy rar	nge	11-35 keV	
Ring circumference	4.6 m	Source siz	e	$<$ 45 μ m $ imes$ 45 μ m	
Repetition rate	64.91 MHz (single bunch)	Divergence	e	4 mrad	
Bunch length	50 ps / 1.5 cm (rms)	Energy ba	ndwidth	3-5%	
Bunch charge	250 pC (max. 500 pC)	Brilliance	(35 keV)	$0.6 \cdot 10^{10} \frac{\text{photons/s}}{\text{mrad}^2 \text{,mm}^2 \cdot 0.1\% \text{ BW}}$	
Re-injection rate	25 Hz	Flux (35 k	eV)	$1 \cdot 10^{10}$ photons/s	
Focus spot size	45 μm×45 μm	Flux scalin	g	$\propto E_x/E_{0x}$ ($E_{0x}=$ 35 keV)	
Laser & Laser Cavity		Performance parameters (as of 3/2017 after laser upgrade)			
Laser wavelength	1064 nm	Laser & Laser Ca	vity	,,	
Cavity Length	9.2 m	Drive laser power	30 W		
Repetition rate	64.91 MHz (two pulses)	Stored laser power	> 300 kV	V	
Pulse length	25-30 ps (FWHM)	Finesse, efficiency	32000 wit	:h 75-80%	
Drive laser power	14 W	X-ray beam			
Stored laser power	up to 140 kW	Source size	$< 50 \ \mu m^{2}$	×50 μm	
Finesse, coupling	32000 with 69%	Divergence	4 mrad		
1 0		Energy bandwidth	5%		
Eggl, Ph.D. thesis, 1	TUM (2017)	Brilliance	up to 0.8	$\cdot 10^{10} \frac{\text{photons/s}}{\text{mrad}^2 \cdot \text{mm}^2 \cdot 0.1\% \text{ BW}}$	
http://mediatum.ub.tum.de?id=1360604		Flux	up to 3.3	$\cdot 10^{10}$ photons/s	

Outline

The MuCLS:

- What is the MuCLS?
- How does it perform?
- How do we operate?

Biomedical research at the MuCLS:

- experimental setups
- selected applications

Typical MuCLS operation

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday		
04:00									
05:00	chiller startup								
06:00	by script	RF warmup							
07:00									
08:00	full startup		short ebeam a	nd X-ray startup					
09:00	+								
10:00	~5 hours till								
11:00	full thermal								
12:00	equilibrium								
13:00	reached								
14:00			X-ray exp	periments		(usually only for			
15:00	machine / setup						in-vivo experiments)		
16:00	or								
17:00	short X-rav								
18:00	experiments								
19:00	•								
20:00			attended experime	nte					
21:00) unattended experiments								
22:00	warm standby								
23:00									
00:00	0:00 warm standby (just RF off), sometimes remote maintenance work by Lyncean								

Who operates the MuCLS machine?

ТЛП

Who operates the MuCLS machine?

2 "expert" operators

- 1 scientist (non-permanent), 1 PhD student
- cold startup
- tricky operation conditions
- troubleshooting & small repairs
- characterization & development

Martin Dierolf

Benedikt Günther
Who operates the MuCLS machine?

2 "expert" operators

- 1 scientist (non-permanent), 1 PhD student
- cold startup
- tricky operation conditions
- troubleshooting & small repairs
- characterization & development

Martin Dierolf

Benedikt Günther

- PhD students with projects at MuCLS
- (mostly) warm startup
- operate the machine within normal parameters

Regine Gradl

Stephanie Kulpe

Juanjuan Huang

Who operates the MuCLS machine?

2 "expert" operators

- 1 scientist (non-permanent), 1 PhD student
- cold startup
- tricky operation conditions
- troubleshooting & small repairs
- characterization & development

Martin Dierolf

Benedikt Günther

3 "regular" operators

- PhD students with projects at MuCLS
- (mostly) warm startup
- operate the machine within normal parameters

Regine Gradl

Stephanie Kulpe

Juanjuan Huang

Senior staff scientist:

- preparations for installation
- radiation safety
- contracts / finances

Klaus Achterhold

Who operates the MuCLS machine?

2 "expert" operators

- 1 scientist (non-permanent), 1 PhD student
- cold startup
- tricky operation conditions
- troubleshooting & small repairs
- characterization & development

Martin Dierolf

Benedikt Günther

Service and support contract:

- remote assistance
- quarterly service visits

3 "regular" operators

- PhD students with projects at MuCLS
- (mostly) warm startup
- operate the machine within normal parameters

Regine Gradl

Stephanie Kulpe

Juanjuan Huang

Senior staff scientist:

- preparations for installation
- radiation safety
- contracts / finances

Klaus Achterhold

Outline

The MuCLS:

- What is the MuCLS?
- How does it perform?
- How do we operate?

Biomedical research at the MuCLS:

- experimental setups
- selected applications

Applications exploit source properties of MuCLS

narrow tunable spectrum

- CT without beam hardening
- K-edge imaging / angiography
- spectroscopy

low divergence / high flux density

- radiation therapy studies
- fast (dynamical) imaging
- high-resolution imaging

partial coherence

- propagation-based phase contrast
- grating-based phase contrast (2 gratings only)

two experimental hutches (sharing same beam)

two experimental hutches (sharing same beam)

two experimental hutches (sharing same beam)

near hutch (16-28 mm beam diameter):

- microtomography
- propagation-based imaging
- radiation therapy studies
- spectroscopy

Regine Gradl

two experimental hutches (sharing same beam)

near hutch (16-28 mm beam diameter):

- microtomography
- propagation-based imaging
- radiation therapy studies
- spectroscopy

Regine Gradl

far hutch (~60 mm beam diameter):

- grating-based phase-contrast and darkfield imaging
- X-ray vector radiography / tensor tomography
- spectral imaging

Christoph Jud

Martin Dierolf | MuCLS - a laboratory-scale synchrotron facility for biomedical research | martin.dierolf@tum.de

Eggl et al., J. Sync. Rad. 23, 1137 (2016)

63

two experimental hutches (sharing same beam)

near hutch (16-28 mm beam diameter):

- microtomography
- propagation-based imaging
- radiation therapy studies
- spectroscopy

Regine Gradl

far hutch (~60 mm beam diameter):

- grating-based phase-contrast and darkfield imaging
- X-ray vector radiography / tensor tomography
- spectral imaging

Outline

The MuCLS:

- What is the MuCLS?
- How does it perform?
- How do we operate?

Biomedical research at the MuCLS:

- experimental setups
- selected applications

Applications exploit source properties of MuCLS

narrow tunable spectrum

- CT without beam hardening
- K-edge imaging / angiography
- spectroscopy

low divergence / high flux density

- radiation therapy studies
- fast (dynamical) imaging
- high-resolution imaging

partial coherence

- propagation-based phase contrast
- grating-based phase contrast (2 gratings only)

Applications exploit source properties of MuCLS

narrow tunable spectrum

- CT without beam hardening
- K-edge imaging / angiography
- spectroscopy

low divergence / high flux density

- radiation therapy studies
- fast (dynamical) imaging
- <u>high-resolution imaging</u>

partial coherence

- propagation-based phase contrast
- grating-based phase contrast (2 gratings only)

Work by

Regine Gradl Kaye Morgan

see also Gradl et al., Scientific Reports 7, 4908 (2017)

Work by

Regine Gradl Kaye Morgan

see also Gradl et al., Scientific Reports 7, 4908 (2017)

increasing sample-to-detector distance

Work by

Regine Gradl Kaye Morgan

see also Gradl et al., Scientific Reports 7, 4908 (2017)

increasing sample-to-detector distance

Work by

Regine Gradl Kaye Morgan

see also Gradl et al., Scientific Reports 7, 4908 (2017)

increasing sample-to-detector distance

Work by

Regine Gradl Kaye Morgan

see also Gradl et al., Scientific Reports 7, 4908 (2017)
Respiratory imaging using inline phase contrast

exp. time = 10 s

exp. time = 0.05 s

exp. time = 1 s

exp. time = 0.1 s

Lung imaged with 13 µm detector pixel size and 1.5 m propagation distance

 \checkmark exposure time can be reduced to 0.05 s

Gradl et al., Scientific Reports 7, 4908 (2017)

Work by

Regine GradI

Kaye Morgan

In collaboration with

David Parsons, Martin Donnelley

Melanie Kimm, Helena Haas, Nathalie Roiser

http://bronchiectasis.com.au/physiotherapy/principles-of-airway-clearance/airway-clearance-in-the-normal-lung

75 um glass beads to mimic inhaled debris

hypertonic saline

<u>1 mm</u>

Gradl et al., to be submitted

Martin Dierolf | Biomedical X-ray imaging at the Munich Compact Light Source | martin.dierolf@tum.de

tracking analysis: Martin Donnelley, WCH Adelaide

Gradl et al., Scientific Reports 8, 6788 (2018)

tracking analysis: Martin Donnelley, WCH Adelaide

Gradl et al., Scientific Reports 8, 6788 (2018)

Applications exploit source properties of MuCLS

narrow tunable spectrum

- CT without beam hardening
- K-edge imaging / angiography
- spectroscopy

low divergence / high flux density

- radiation therapy studies
- fast (dynamical) imaging
- high-resolution imaging

partial coherence

- propagation-based phase contrast
- grating-based phase contrast (2 gratings only)

Work by

gratings \rightarrow detect preferential direction of scattering

Work by

Jud et al., Scientific Reports 7, 6788 (2017)

detection of radiographically occult fractures in an ex-vivo porcine rib model

Work by

Jud et al., submitted

84

detection of radiographically occult fractures in an ex-vivo porcine rib model

Work by

Jud et al., submitted

Mammography @ MuCLS

Work by

Mammography @ MuCLS – motivation

- Breast cancer screening: Mammography
 - low soft-tissue contrast
 - dose sensitivity
 - false-positives → unnecessary invasive procedures

For every 1,000 women - who have a screening mammogram:	
100 - are called back for more tests	
20 - are referred for a needle biopsy	
5	

www.slco.org

Work by

Elena Eggl Lisa

Lisa Heck J

Mammography @ MuCLS – motivation

- Breast cancer screening: Mammography
 - low soft-tissue contrast
 - dose sensitivity
 - false-positives → unnecessary invasive procedures
- Research:
 - Mammography with synchrotron radiation
 - Grating-based multimodal mammography

Elena Eggl

l Lisa Heck Julia H

who have a screening mammogram:	-
100 are called back for more tests	
20 - are referred for a needle biopsy	
5	

www.slco.org

Mammography @ MuCLS – motivation

- Breast cancer screening: Mammography
 - low soft-tissue contrast
 - dose sensitivity
 - false-positives → unnecessary invasive procedures
- Research:
 - Mammography with synchrotron radiation
 - Grating-based multimodal mammography

Elena Eggl

Lisa Heck Ju

For every 1,000 women - who have a screening mammogram:	-
100 - are called back for more tests	
20 - are referred for a needle biopsy	
5	

www.slco.org

@ MuCLS:combine advantages& avoid disadvantages

Mammography @ MuCLS – study design

Goal: dose-compatible grating-based mammography at the MuCLS

mammography \rightarrow positive diagnosis

DER UNIVERSITÄT MÜNCHEN \rightarrow mastectomy \rightarrow fix in sample holder

Compare ex-vivo mammography

Clinical vs. MuCLS

Quantitative analysis for a mammographic accreditation phantom (contrast-to-noise ratio analysis)

Mammography @ MuCLS - results

Mammography @ MuCLS - results

Equal detection of microcalcifications at reduced dose

Eggl et al., Scientific Reports 8, 15700 (2018)

Mammography @ MuCLS - results

Improved delineation of tumorous lesions in DPC image

Eggl et al., Scientific Reports 8, 15700 (2018)

Applications exploit source properties of MuCLS

narrow tunable spectrum

- CT without beam hardening
- K-edge imaging / angiography
- spectroscopy

low divergence / high flux density

- radiation therapy studies
- fast (dynamical) imaging
- high-resolution imaging

partial coherence

- propagation-based phase contrast
- grating-based phase contrast (2 gratings only)

work by Karin Burger

General idea:

irradiation with small beamlets (<100 µm) instead of broad beams

 \rightarrow spare skin / heathly tissue area

 \rightarrow improved recovery of irradiated healthy tissue

work by Karin Burger

General idea:

irradiation with small beamlets (<100 μm) instead of broad beams

ightarrow spare skin / heathly tissue area

 \rightarrow improved recovery of irradiated healthy tissue

high dose rates & small beam divergences \rightarrow mainly limited to synchrotron radiation so far

- \rightarrow investigate at Munich Compact Light source
 - in-vitro cell studies
 - in-vivo small-animal tumor models

work by Karin Burger

Microbeam radiation therapy studies work by Experimental setup Karin Burger Cells on Mylar foil Photon counting detector W-slit array EBT3-film Electron storage ring X-ray beam IR laser cavity ~2 m ~16 m Source distance: 0 m ~1 m Burger et al., PLoS ONE 12, e0186005 (2017)

Martin Dierolf | MuCLS - a laboratory-scale synchrotron facility for biomedical research | martin.dierolf@tum.de

98

gamma-H2AX staining of DNA double-strand breaks in HeLa cells

2 Gy mean (~14 Gy peak)

\rightarrow MuCLS provides required beam parameters

Burger et al., PLoS ONE 12, e0186005 (2017)

Martin Dierolf | MuCLS - a laboratory-scale synchrotron facility for biomedical research | martin.dierolf@tum.de

2 Gy mean homogenous

work by

not irradiated

Karin Burger

Applications exploit source properties of MuCLS

narrow tunable spectrum

- CT without beam hardening
- K-edge imaging / angiography
- spectroscopy

low divergence / high flux density

- radiation therapy studies
- fast (dynamical) imaging
- high-resolution imaging

partial coherence

- propagation-based phase contrast
- grating-based phase contrast (2 gratings only)

Coronary angiography at MuCLS

Work by

Elena Eggl Stephanie Kulpe Daniela Pfeiffer

Coronary angiography at MuCLS

Eggl et al., Scientific Reports 7, 42211 (2017)

Coronary angiography of a pig heart

Eggl et al., Scientific Reports 7, 42211 (2017)

One step further: K-edge subtraction imaging

Work by

Stephanie Kulpe

One step further: K-edge subtraction imaging

Work by

Kulpe et al., PloS ONE 13, e0208446 (2018)

One step further: K-edge subtraction imaging

Work by

Stephanie Kulpe

Kulpe et al., PloS ONE 13, e0208446 (2018)

Applications exploit source properties of MuCLS

narrow tunable spectrum

- CT without beam hardening
- K-edge imaging / angiography
- <u>spectroscopy</u>

low divergence / high flux density

- radiation therapy studies
- fast (dynamical) imaging
- high-resolution imaging

partial coherence

- propagation-based phase contrast
- grating-based phase contrast (2 gratings only)

Absorption spectroscopy at MuCLS

Juanjuan Huang

Absorption spectroscopy at MuCLS

Juanjuan Huang

Huang et al., to be submitted

Martin Dierolf | MuCLS - a laboratory-scale synchrotron facility for biomedical research | martin.dierolf@tum.de

Absorption spectroscopy at MuCLS

Reference taken at QXAFS, BL14B2, SPring8, courtesy: Dr. Yitao Cui

Juanjuan Huang

Huang et al., to be submitted

Martin Dierolf | MuCLS - a laboratory-scale synchrotron facility for biomedical research | martin.dierolf@tum.de

111

ТЛП

Conclusions

MuCLS: a lab-sized synchrotron facility based on an inverse Compton scattering source

In day-to-day use for experiments

Focus on experiments that exploit special (for lab source) properties

Acknowledgements: respiratory imaging

Women's and Children's Hospital A D E L A I D E

Klinikum rechts der Isar Technische Universität München David Parsons, Martin Donnelley

Melanie Kimm, Helena Haas, Nathalie Roiser

HelmholtzZentrum münchen

German Research Center for Environmental Health

Otmar Schmid, Winfried Möller, David Kutschke, Lin Yang, et al.

Acknowledgements

MuCLS team @ TUM Chair of Biomedical Physics: Klaus Achterhold, Benedikt Günther, Elena Eggl, Regine Gradl, Christoph Jud, Karin Burger, Eva Braig, Lisa Heck, Johannes Brantl, Thomas Buchner, David Cont, Jessica Böhm, Stephanie Kulpe, Juanjuan Huang, Daniela Pfeiffer (Radiology), Julia Herzen, Kaye Morgan, Franz Pfeiffer + many more people at the Chair of Biomedical Physics

www.e17.ph.tum.de

www.lynceantech.com

Rod Loewen, Martin Gifford, Chris Juan, Terri Lahey, Bryan Woo, Matt Mezzetta, Michael Feser, Ron Ruth, ...

Munich School of BioEngineering

www.bioengineering.tum.de

Axel Haase, Bernhard Gleich

Ferenc Krausz Martin Groß, Michael Bäuerle www.munich-photonics.de DFG Cluster of Excellence Munich-Center for Advanced Photonics (DFG EXC-158)

Martin Dierolf | MuCLS - a laboratory-scale synchrotron facility for biomedical research | martin.dierolf@tum.de

ПІП

ПІП

ПП

117

X-ray experiments from a user perspective

As long as parameters are as required

 \rightarrow Users usually do not want to care about details of X-ray generation

X-ray experiments from a user perspective

As long as parameters are as required

 \rightarrow Users usually do not want to care about details of X-ray generation

Requirements on source:

- parameters meet users' needs
 - reproducible (day-to-day)
 - stable (over many hours)

X-ray experiments from a user perspective

As long as parameters are as required

 \rightarrow Users usually do not want to care about details of X-ray generation

Requirements on source:

- parameters meet users' needs
 - reproducible (day-to-day)
 - stable (over many hours)
- beam available exactly when needed by experiment (e.g. in in-vivo studies)

- long scans (computed tomography)
 - source sufficiently stable over many hours
 - only minimal operator intervention possible at all

121

- long scans (computed tomography)
 - source sufficiently stable over many hours
 - only minimal operator intervention possible at all
- short interruptions (e.g. laser lock lost)
 - beam monitor that stops experiments (and restarts them when flux back)
 - can still degrade image quality, in particular if source position shifts

- long scans (computed tomography)
 - source sufficiently stable over many hours
 - only minimal operator intervention possible at all
- short interruptions (e.g. laser lock lost)
 - beam monitor that stops experiments (and restarts them when flux back)
 - can still degrade image quality, in particular if source position shifts
- longer interruptions (~hours)
 - during in-vitro or in-vivo
 - \rightarrow loss of valuable specimens possible (e.g. limited lifetime of cell cultures)
 - during tomography scan
 - \rightarrow data taken so far (up to several hours) might be unusable

- long scans (computed tomography)
 - source sufficiently stable over many hours
 - only minimal operator intervention possible at all
- short interruptions (e.g. laser lock lost)
 - beam monitor that stops experiments (and restarts them when flux back)
 - can still degrade image quality, in particular if source position shifts
- longer interruptions (~hours)
 - during in-vitro or in-vivo
 - \rightarrow loss of valuable specimens possible (e.g. limited lifetime of cell cultures)
 - during tomography scan
 - \rightarrow data taken so far (up to several hours) might be unusable
- specimens directly in radiation shielding enclosure of source
 → too disruptive, too long time until beam back

- long scans (computed tomography)
 - source sufficiently stable over many hours
 - only minimal operator intervention possible at all
- short interruptions (e.g. laser lock lost)
 - beam monitor that stops experiments (and restarts them when flux back)
 - can still degrade image quality, in particular if source position shifts
- longer interruptions (~hours)
 - during in-vitro or in-vivo
 - \rightarrow loss of valuable specimens possible (e.g. limited lifetime of cell cultures)
 - during tomography scan
 - \rightarrow data taken so far (up to several hours) might be unusable
- specimens directly in radiation shielding enclosure of source
 → too disruptive, too long time until beam back
- focus on experiments that exploit the (for a lab source) unique source properties Martin Dierolf | MuCLS - a laboratory-scale synchrotron facility for biomedical research | martin.dierolf@tum.de 124