

Accélérateurs et instrumentation faisceau au LPSC

B. Cheymol, A. Beller, D. Bondoux S. Curtoni, D. Dauvergne, M-L Gallin-Martel

sommaire

- Le pole accélérateur et source d'ion du LPSC
- Les projets accélérateurs du pole
- Les diagnostics faisceaux
- Monitorage faisceaux

Pole accélérateur et source d'ions

Développements de source d'ion ECR

- Source Phoenix pour GANIL
- Booster de charge (SPES/GANIL)
- Ions métalliques fortement chargés ECR compact (SuperComic)
 - Ion léger, 4 mA

Banc test Phoenix v3

Projet accélérateur

- Conception, fabrication et mise en service de GENEPI3
 - Maquette ADS en fonctionnement à Mol (Belgique)
- Spiral 2
 - Design et fabrication des coupleurs de puissance
- Implication dans MYRRHA
- Exploitation de GENEPI2

Source SuperComic

GENEPI2

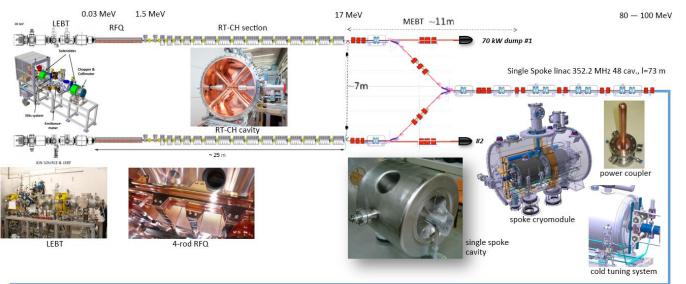
Mise à jour pour atteindre 2 mA sur cible:

- Changement de la source en 2016
- Augmentation du blindage autour le casemate en 2018
- Nouveau design de la cible (en cours)
- Design et installation de diagnostics

Source de neutron rapide intense

- Neutron de 2,5 ou 14 MeV
- Production de 8.10⁹ n.s⁻¹

Accélérateur électrostatique


- Source ECR SUPERCOMIC
- Deuton de 220 keV
- Courant sur cible de 150 μA
- CW

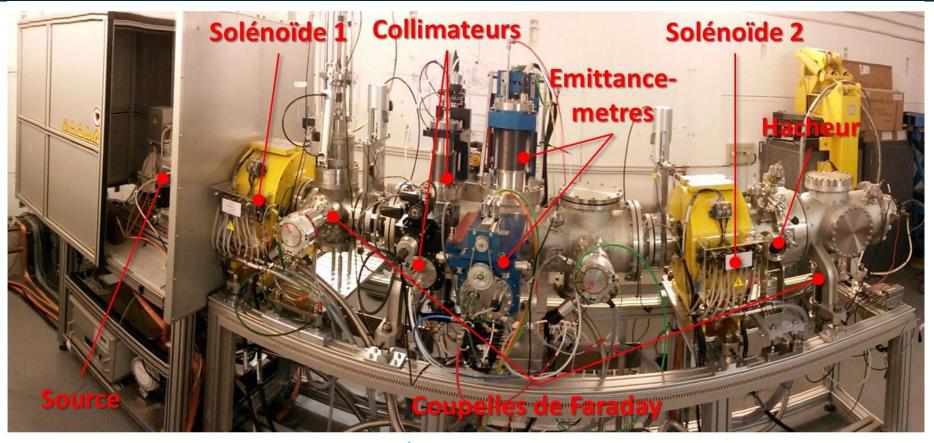
MYRRHA

MYRRHA: Multipurpose hYbrid Research Reactor for High-tech Applications (SCK-CEN)

Double Spoke linac 352.2 MHz -000 β=0.70 elliptical linac 704.4 MHz 200 MeV 600 MeV 60 cav., 101 m β=0.51 elliptical linac 704.4 MHz Beam dump 704.4 MHz ELLIPTICAL LINAC β=0.705 5 element elliptical cavity Reactor target elliptical cavity envelope with cold tuning mechanism design of the test cryomodule for the 700 MHz Solid State RF amplifier prototyping

elliptical cavity

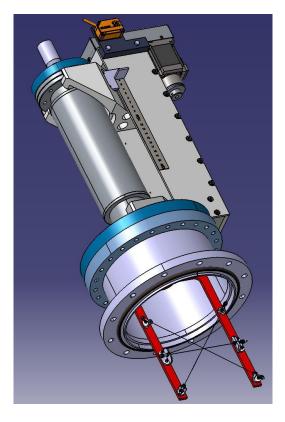
Construction d'un Accelerator Driven System (ADS) pour:

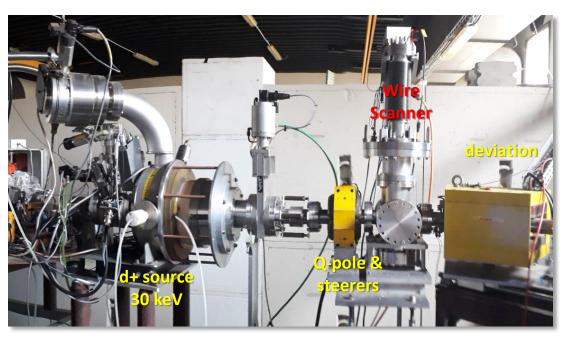

- Demonstration du concept
- Transmutation of nuclear High-Level-Waste (HLW) demonstration
- multipurpose and flexible fast irradiation facility

Paramètres faisceaux:

- Type de particule: proton
- Courant: 0,1 à 4 mA
- Cycle utile: 10⁻⁴ à 1
- Taux de répétition: 10 Hz, 250 Hz et CW

MYRRHA @LPSC




- Design et commissioning du LEBT MYRRHA
- Design des coupleurs de puissance pour les cavités SPOKES
- Prototype d'un Wire Scanner (WS) dans le cadre du projet MYRTE

Wire scanner

- Fil tungstène de 80 μm
- FE électronique custom
- Electronique digitale commercial (NI)
- Interface sous LabVIEW
- Premier test sous faisceau de D+ en début d'année (DC, 50 μA)

Développement instrumentation

GENEPI2

- Rénovation complète de l'instrumentation
 - Actuellement seul le courant sur cible est monitoré
- Installation d'une coupelle Faraday
 - Design préliminaire en cours
- Design et installation de moniteurs de profil
 - Adaptions du design du WS
 - Etude d'un profileur non invasif (caméra)
- Campagne de mesure d'emittance
 - Utilisation d'Allison scanner

■ WS MYRRHA/MYRTE

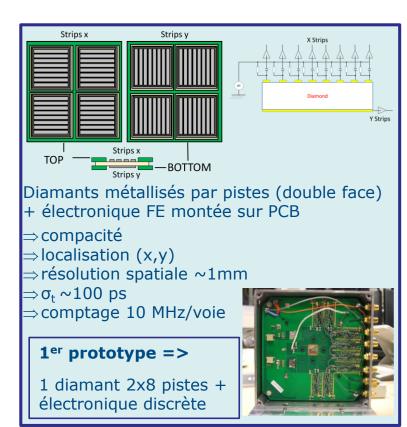
Poursuite des études et essais sur le WS

Nouveaux projets

- Réflexions sur la participation aux diagnostics de MYRRHA
 - Développement d'émittance mètre haute puissance et haut résolution
 - Système fente/fente, fente/grille...
 - Energie de quelques MeV (1,5 -> 17 MeV)
 - Courant ≤ 4-5 mA
 - profil transverse
 - Wire scanner
 - Energie ≥ 1,5 MeV
 - Mode pulsé et/ou continu
 - Système WS + scintillateur (E> 150-200 MeV)
 - Profil non invasif
 - Pas de problème thermique
 - Ionisation
 - fluorescence

Monitorage faisceaux

DÉVELOPPEMENT DE DÉTECTEURS DIAMANTS POUR LE MONITORAGE FAISCEAUX


Développement de nouvelles générations d'accélérateurs d'ions

- → pour la physique (physique nucléaire et des hautes énergies),
- → pour les applications médicales (radiothérapie X, hadronthérapie, radiothérapie par rayonnement synchrotron),
- ⇒ surveillance très précise du faisceau + comptage rapide

dans un environnement fortement irradié.

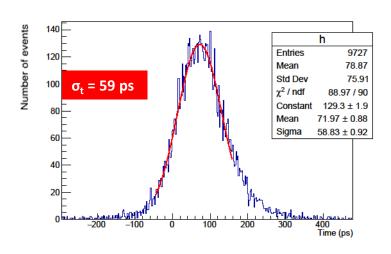
Développement d'un hodoscope diamant

- → Excellente résolution temporelle
- → Résistance aux radiations
- → Capacité de comptage très élevée
- → Electroniques de lecture embarquée
 - → ASIC (TIA, QDC, TDC) (Diamasic Grenoble Caen)
 - → Discrète (LPSC)

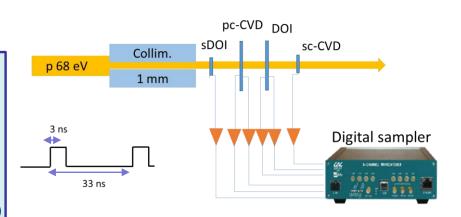
Performances sur faisceaux

68 MeV proton @ ARRONAX

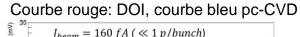
Diamants: sDOI (hétéroépitaxié) : 5.0 x 5.0 mm² x 300 μm

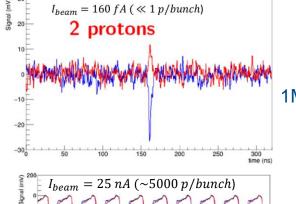

pc-CVD (polycrystallin) : 10 x 10 mm² x 300 µm

DOI (hétéroépitaxié) : 10 x 10 mm² x 300 μm

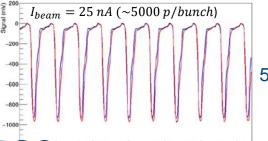

sc-CVD (monocrystallin): 4.5 x 4.5 mm² x 515 µm

Electronique : CIVIDEC préampli de courant rapide (2GHz, 40dB)


Résolution en temps



Résolution en temps entre deux détecteurs diamant



Plage dynamique

1MeV/proton

5 GeV/pulse

12

Plus de détails : poster S. Curtoni LPSC

Merci pour votre attention