Particle Physics Highlights and Challenges

Beate Heinemann

DESY and Albert-Ludwigs-Universität Freiburg

Outline

(personal selection of material)

CERN-ESU-004 30 September 2019

Physics Briefing Book

Input for the European Strategy for Particle Physics Update 2020

Electroweak Physics: Richard Keith Ellis¹, Beate Heine mann^{2,3} (Convence s) Jorge de Blas^{4,5}, Maria Cepeda⁶, Christophe Grojean^{2,7}, Fabio Matton^{8,9}, A teandro Nisati ¹⁰, Elisabeth Peit¹¹, Riccardo Rattazzi¹², Wouter Verkerka¹³ (Contributors)

Strong Interactions: Jorgen D'Hondt¹⁴, Krzysztof Redlich¹⁵ (Conveners)

Anton Andronic¹⁶, Ferenc Sikle²⁷ (Scientle: Secretaries)

Nestor Armesto¹³, Daniel Boer¹⁹, David d'Enterina²⁰, Tely ana Galatayuk²¹, Thomas Gehrmann ²²,

Klaus Kirch²³, Uta Klein²⁴, Jean-Philippe Lansberg²⁵, Gavin P. Salam²⁶, Ganar Schnett²⁷,

Johanna Stachel²⁸, Tanguy Pierog³⁹, Hartmut Wittig²⁰, Urs Wiedemann²⁰(Conarthuors)

Havour Physics: Belen Gaveta¹¹, Antonio Zoccoti¹² (Conveners)
Sandra Malvezzi²³ Ana Ericeira²⁴ Jure Zupan²³ (Szteruţte Secretartes)
Daniel Aloni²⁶, Augusto Coccucci²⁷, Aviata Dery², Michael Dine²⁷, Svetaraa Fajler²⁷, Stefania Gori²⁷, Gadrun Hitler²⁸, Gino Islandi²⁷, Yoshikata Kuno²⁰, Alberto Lusiani²¹, Yoser Nir²⁶,
Marie-Hekne Schune²², Marco Sorzi²⁷, Stephan Padi⁴, Carlos Pena² (Conurbuors)

Neutrino Physics & Cosmic Messengers: Stan Bentvelsen⁴⁵, Marco Zito^{46,67} (Conveners)

Albert De Rocck ²⁰, Thomas Schwete²⁰ (Scientific Secretaries)

Bonnie Fleming⁴¹, Francis Hatzen⁴⁰, Andreas Haungs³⁰, Marek Kowatski², Susanne Mertens⁴⁴,
Mauro Mezetto², Silvia Pascoti²⁰, Bangaloe Sathyaprakash³¹, Nicola Serra²¹ (Conribuors)

Beyond the Standard Model: Gian F. Giudice ²⁰, Paris Sphicas ^{20,52} (Conveners)
Juan Alcarar Maeste⁴, Caterina Doglioni⁵³, Giaia Lanfranchi ^{20,54}, Monica D'Onofrio ⁵⁴,
Matthew McCutlough ²⁰, Giatal Peres ²⁶, Philipp Rotoff ²⁰, Veronica Sanz ²³, A ndreas Weiter ⁴⁴,
Andrea Wutzer ^{51,220} (Conurbuors)

Dark Matter and Dark Sector: Shoji Asa²⁶, Marcela Carena²⁷ (Conveners)

Babette Dobrich²⁰, Caterina Dogiton²³, Joerg Jacckel²³, Gordan Kmjaic²⁷, Joety n Monroe²⁸,
Konstantinos Petridis²⁹, Christoph Weniger²⁰ (Scienufic Section test/Courthuors)

Accelerator Science and Technology: Caterina Biscari⁶¹. Leonid Rivkin⁶² (Convenors)

Phitip Burrows⁶², Frank Zimmermann⁶³ (Scientife: Secretarite)

Michael Benedikt⁶², Pierhigi Campana⁶², Edda Guchwendiner⁶², Erk kenes ⁶², Mike Lamont⁶³,

Wim Leemans⁷², Lucio Rossi⁶³, Daniel Schulte⁶³, Mike Seidel⁶³, Vladimir Shiltsey⁶³,

Steinar Stenes ⁶³, Akira Yammonto ⁶³⁰, (Constributors)

Instrumentation and Computing: Xinchou Lou⁶⁵, Brigitte Vachon⁶⁶ (Comeners)
Roger Jones⁶⁷, Emilia Leogrande⁵⁸ (Scientific Secretaries)
Ian Bird⁵⁰, Simone Campana⁵⁰, Arielta Cattaia⁵⁰, Didéer Contardo⁶⁸, Cintria Da Via⁶⁶, Francesco Forti⁷⁰, Maria Girone⁵⁰, Matthias Kasemann⁷, Lucie Linssen⁵⁰, Felix Selkow², Graeme Saewan⁵⁰(Courthhaors)

Editors: Halina Abramowicz71, Roger Forty20, and the Conveners

- Electroweak Physics
- Strong Interactions
- Flavour Physics
- Neutrino Physics
- Dark Matter and Dark Sectors
- Hierarchy Problem

Material based largely on <u>Physics Briefing Book</u> of European Strategy for Particle Physics Update 2020, released on Oct. 2nd 2019

Electroweak Interactions

- Discovered mechanism to break electroweak symmetry
 - Higgs mechanism
- Provides technical solution but very unsatisfactory
- Higgs sector contains 15 ad-hoc parameters
 - Only 3 in gauge sector!

G. Giudice: "Essentially all problems or unsatisfactory aspects of the Standard Model are ultimately related to the structure of Higgs interactions"

Higgs Boson: 2012 vs 2019

Differential H Cross Section Measurements

Higgs Couplings Today

Parameter	Result
κ_Z	1.10 ± 0.08
κ_W	1.05 ± 0.08
κ_b	$1.06^{+0.19}_{-0.18}$
K_t	$1.02^{+0.11}_{-0.10}$
$K_{\mathcal{T}}$	1.07 ± 0.15
κ_{μ}	< 1.53 at 95% CL

assumes $BR_{BSM}=0$

Gauge bosons and 3rd gen fermions: δ≈10-20%

Current Results vs High-Luminosity LHC

LHC now vs HL-LHC

High Luminosity LHC (HL-LHC)

Comparison of Future Colliders

arXiv:1905.03764

Requires also significant improvements in theoretical calculations

of "largely" improved H couplings (EFT)

NB: number of seconds/year differs: ILC 1.6x10⁷, FCC-ee & CLIC: 1.2x10⁷, CEPC: 1.3x10⁷

		Factor ≥2	Factor ≥5	Factor ≥10	Years from T ₀
Initial run	CLIC380	9	6	4	7
	FCC-ee240	10	8	3	9
	CEPC	10	8	3	10
	ILC250	10	7	3	11
2 nd /3rd Run ee	FCC-ee365	10	8	6	15
	CLIC1500	10	7	7	17
	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
ee,eh & hh	FCC-ee/eh/hh	12	11	10	>50

13 quantities in total

of "largely" improved H couplings (EFT)

NB: number of seconds/year differs: ILC 1.6x10⁷, FCC-ee & CLIC: 1.2x10⁷, CEPC: 1.3x10⁷

		Factor ≥2	Factor ≥5	Factor ≥10	Years from T ₀
Initial run	CLIC380	9	6	4	7
	FCC-ee240	10	8	3	9
	CEPC	10	8	3	10
	ILC250	10	7	3	11
2 nd /3rd Run ee	FCC-ee365	10	8	6	15
	CLIC1500	10	7	7	17
	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
ee,eh & hh	FCC-ee/eh/hh	12	11	10	>50

13 quantities in total

About half the couplings improved by factor 5 already in initial run

Electroweak potential

Standard Model

- Electroweak phase transition (EWPT) is a "smooth crossover"
- Electroweak symmetry restored for T≥T_C=130 GeV

Alternative idea

- Electroweak phase transition via tunneling: 1st order transition
 - Two phases co-exist
- Electroweak baryogenesis possible if strong 1st order transition $v(T_{\rm pt}) > 1.0$

Electroweak potential

Standard Model

- Electroweak phase transition (EWPT) is a "smooth crossover"
- Electroweak symmetry restored for T≥T_C=130 GeV

Alternative idea

- Electroweak phase transition via tunneling: 1st order transition
 - Two phases co-exist
- Electroweak baryogenesis possible if strong 1st order transition $v(T_{\rm pt}) > 1$

Continuous Crossover $(\phi) = 246 \text{ GeV}$ increasing time

Measuring the Higgs self-coupling: LHC

Hadron collider

Di-Higgs Production: LHC results

HH→bbtt search result

HH analyses combined

=> Upper limit at 95% CL: 6.9 x σ_{SM} => -5< κ_{λ} <12

Sensitivity to κ_{λ} : future colliders

Higgs@FC WG September 2019

- HL-LHC: ~50%
 - Already relevant for EWPT!
- Future high-energy colliders: ~5-10%

The Strong Interaction

Conceptional aspects of QCD (closely related to nuclear physics)

- Long-distance phenomena (e.g. confinement)
- Collective behaviour at high temperatures or densities
- Transition of high to low energies (e.g. hadronisation)

Practical aspects of QCD predictions

- Soft interactions constitute "noise" in high-pileup environment
- Parton flux in proton determined by parton distribution functions (PDFs)
- Strong coupling constant governs rate jet production at pp collider
- Precise predictions at hadron colliders require ever higher order calculations

Soft QCD processes

Relevant for understanding of pileup at LHC, for high energy astrophysics and for non-pertubative calculations

Neutral particles: forward n and γ production

- LHCf: dedicated experiment measuring production of neutral particles in forward direction
- Data measurements discriminate between different models

Anti-proton production in p-He collisions

AMS and PAMELA spectrometers measure fraction of antiprotons in space

- Indirect probe for dark matter annihiliation
- Uncertainties on antiproton cross sections in pp and pHe collisions important

LHCb uses fixed-target mode (p+He gas) to measure antiproton production in pHe collisions

Perturbative QCD at the LHC

- Multi-differential measurements of QCD production processes
 - Test MC generators and higher order QCD calculations (NNLO+beyond)
 - Determine strong coupling constant α_s and/or parton distribution functions

Parton distribution functions

- Full exploitation of pp data requires precise knowledge of PDFs
 - New ep colliders (LHeC, EIC, FCC-eh) can provide important input

Parton distribution functions

- Full exploitation of pp data requires precise knowledge of PDFs
 - New ep colliders (LHeC, EIC, FCC-eh) can provide important input

Flavour Physics

- Flavour puzzle today (adapted from Y. Nir):
 - Why is there so much structure in the quark sector?
 - Why is there no structure in the neutrino sector?
 - Why are there no flavor-changing neutral currents?
- What is source of CP violation explaining lack of anti-matter?
- Flavour is also excellent probe of high-scale physics
 - New physics tends to break accidental symmetries of SM

Flavour: New Physics Sensitivities

Electric Dipole Moment

"Has killed more SUSY models than anything else" (I. Hinchliffe)

- Current limits: 3.6x10⁻²⁶ for neutron, 1.1x10⁻²⁹ for electron
 - Lepton and quark EDMs are complementary tests of new physics
- Advancements planned in future experiments: factors ~10-1000
- Observation would be clear evidence for new physics

Lepton Flavour Violation: $\mu \to e$ and $\tau \to \ell$

Several dedicated experiments coming online in near future for $\mu \to e$ decay or transition in Europe, US and Japan

Lepton Flavour Violation: $\mu \to eX$ and $\tau \to \ell X$

Muons: Expect to improve sensitivity by factor 10⁴!

Taus:

- Next decade (LHCb, Belle-II): ~10²
- Beyond next decade (Tera-Z): ~10³

Rare Kaon decays

- Charged and neutral kaon decays important probe of new physics
 - Major focus: $K^+ \to \pi^+ \nu \bar{\nu}$ (NA62) and $K_L^0 \to \pi^0 \nu \bar{\nu}$ (KOTO, KLEVER)

Recent Result by NA62

2016+2017 data

- N_{data}=3
- $N_{\text{background}} = 1.65 \pm 0.31$

$$BR(K^+ \to \pi^+ \nu \nu) < 1.85 \times 10^{-10} @ 90 \% CL$$

 $BR(K^+ \to \pi^+ \nu \nu) = 0.47^{+0.72}_{-0.47} \times 10^{-10}$

Future Prospects

Future Prospects

Heavy Flavour

- Super-KEKB and Belle-II
 - Data taking started: towards lumi goal
- LHCb detector upgrade

Anomalies in flavour physics

- Lepton flavour violation probes in B-decays
- Define:

$$R_{H} = \frac{\int_{q_{\text{min}}^{2}}^{q_{\text{max}}^{2}} \frac{d\Gamma[B \to H\mu^{+}\mu^{-}]}{dq^{2}} dq^{2}}{\int_{q_{\text{min}}^{2}}^{q_{\text{max}}^{2}} \frac{d\Gamma[B \to He^{+}e^{-}]}{dq^{2}} dq^{2}}$$

- Several BSM explanations proposed, e.g.
 - Leptoquarks
 - Z' with LFV couplings

Is flavour anomaly explained by leptoquark or Z'?

Complementary: direct searches at hadron colliders

CKM Unitarity Triangle

Expect huge improvements in parameters of CKM unitarity triangle by ~2025

 Even higher precision expected by ~2035

Can Higgs tell us about Flavour?

- Higgs is the only boson that cares about flavour!
 - Could it tell us something?
- Fermion couplings
 - 3rd generation observed
 - Now: 10% precision
 - Future colliders: ~1% precision
 - 2nd generation:
 - Muons: HL-LHC
 - Charm: requires new collider
 - 1st generation: very difficult
 - LFV couplings
 - HL-LHC sensitivity 10⁻³-10⁻⁴

Neutrinos: Many Questions

- What is the mass ordering?
- Is CP violated?
- What is the absolute mass scale?
- Are neutrinos Dirac or Majorana particles?
- Are there heavy neutrinos?
- •

Tackling the neutrino sector experimentally

Fit to World Neutrino data

6 free parameters in fit

		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 10.4$)	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
with SK atmospheric data	$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$	$0.310^{+0.013}_{-0.012}$	$0.275 \to 0.350$
	$ heta_{12}/^\circ$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.61 \rightarrow 36.27$
	$\sin^2 \theta_{23}$	$0.563^{+0.018}_{-0.024}$	$0.433 \rightarrow 0.609$	$0.565^{+0.017}_{-0.022}$	$0.436 \rightarrow 0.610$
	$ heta_{23}/^\circ$	$48.6^{+1.0}_{-1.4}$	$41.1 \rightarrow 51.3$	$48.8^{+1.0}_{-1.2}$	$41.4 \rightarrow 51.3$
	$\sin^2 \theta_{13}$	$0.02237^{+0.00066}_{-0.00065}$	$0.02044 \rightarrow 0.02435$	$0.02259^{+0.00065}_{-0.00065}$	$0.02064 \rightarrow 0.02457$
	$\theta_{13}/^{\circ}$	$8.60^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.98$	$8.64^{+0.12}_{-0.13}$	$8.26 \rightarrow 9.02$
	$\delta_{ m CP}/^\circ$	221_{-28}^{+39}	$144 \rightarrow 357$	282^{+23}_{-25}	$205 \rightarrow 348$
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.528^{+0.029}_{-0.031}$	$+2.436 \to +2.618$	$-2.510^{+0.030}_{-0.031}$	$-2.601 \rightarrow -2.419$

CP violation and Mass Ordering

Mass ordering

Combined T2K & Nova data
 prefer normal ordering (~3σ)

CP violation:

- CP violation ($\delta_{CP} \neq 180^{\circ}$) favoured by T2K data (~2 σ)
- NOVA data show no preference

Construction of future Long Baseline Experiments

- CERN neutrino platform plays pivotal role
 - Test & understand protoDUNE singleand dual-phase detectors
 - Critical input for TDRs
- Hyper-K construction starting in 2020

Sensitivity of future experiments

Different technologies of Hyper-K and DUNE (Water Cherenkov vs LAr TPC) => somewhat complementary

Absolute Neutrino Mass Scale

- First results from KATRIN (Sept. 2019)
 - Upper limit: m_e <1.1 eV @ 90% CL
 - Based on 28 days of data taking
 - − 5y sensitivity: m_e<0.2 eV
- Future cosmology missions (Euclid, DESI) will also have sensitivity

Is the neutrino its own anti-particle?

- Several experiments of next generation planned
- Should probe inverted hierarchy allowed region

Dark Sector

Y. Hochberg, LP '19

YH @ Lepton Photon, Toronto 2019

Dark Sector

Dark Matter Candidates: Very little clue on mass scales

Too small mass ⇒ won't "fit" in a galaxy!

graphics by M. Carena

How to search for WIMPs?

Dark Matter processes with Higgs

DM annihilation early Universe & satellites

DM-N Scattering (XENON1T etc.)

DM production early Universe & LHC

"Invisible" Higgs decays?

- Does dark matter (χ) interact with the Higgs?
 - Higgs can decay to dark matter candidates if $m_H > 2 m_\chi$

Comparing direct detection and Higgs constraints

Dark Matter can be scalar, vector or fermion:

$$BR_{\chi}^{inv} \equiv \frac{\Gamma(H \to \chi \chi)}{\Gamma_H^{SM} + \Gamma(H \to \chi \chi)} = \frac{\sigma_{\chi p}^{SI}}{\Gamma_H^{SM}/r_{\chi} + \sigma_{\chi p}^{SI}}$$

with
$$r_{\chi} = \Gamma(H \to \chi \chi)/\sigma_{\chi p}^{\rm SI}$$

- Approaches are complementary
 - Higgs more sensitive at low mass, direct detection more sensitive at high mass
- Comparison is mode—dependent
 - This is good: if we see signal we will learn physics from it!

Monojet search

Can fully probe thermal WIMP with FCC-hh

Other Dark(ish) Particles: FIPs

Feebly interacting particles (FIPs)

Portal	Coupling
Vector (Dark Photon, A_{μ})	$-\frac{\varepsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$
Scalar (Dark Higgs, S)	$(\mu S + \lambda_{HS}S^2)H^{\dagger}H$
Fermion (Sterile Neutrino, <i>N</i>)	$y_N LHN$
Vector (Dark Photon, A_{μ}) Scalar (Dark Higgs, S) Fermion (Sterile Neutrino, N) Pseudo-scalar (Axion, a)	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^{5}\psi$

- Electroweak phase transition
- Dark matter
- Finetuning problem

Axion-Like Particles (ALPs)

- Axion originally proposed as solution to strong CP problem (Peccei, Quinn)
 - Could also be relevant for Dark Matter, stellar evolution..
- Many complementary searches for Axion-Like Particles
 - Dedicated experiments (ALPS, CAST, IAXO), beam dump facilities (e.g. SHiP) and colliders

Is our world natural?

• Large quantum corrections to Higgs mass:

$$\Delta m_H^2 = -rac{|\lambda_f|^2}{8\pi^2} [\Lambda_{UV}^2 + ...]$$
. ~ M_{Pl}^2 if no new physics with $\Lambda < M_{Pl}$

• Unnatural that $m_H \ll \Lambda_{NP} =>$ "hierarchy problem"

• Quantify: $\varepsilon \equiv \frac{m_H^2}{\left(\Delta m_H^2\right)^2}$

Method	Dependence	Current Constraint
Direct searches: soft models	$\Delta m_H^2 \sim m_T^2$	$\varepsilon \lesssim 1\%$
Direct searches: super-soft models	$\Delta m_H^2 \sim 3y_t^2/(4\pi^2)m_T^2$	$\varepsilon \lesssim 10\%$
Direct searches: hyper-soft models	$\Delta m_H^2 \sim 3\lambda_h/(16\pi^2)m_T^2$	$\varepsilon \lesssim 100\%$
Higgs couplings	$m_H^2/\Delta m_H^2 \sim \delta g_h/g_h$	$\varepsilon \lesssim 10\%$
Oblique parameters (CH models)	$m_H^2/\Delta m_H^2 \sim \delta O \times 3$	$\varepsilon \lesssim 30\%$
Oblique parameters (SUSY models)	$m_H^2/\Delta m_H^2 \sim \delta O \times 10^3$	n.a.

Simplicity vs Naturalness

R. Rattazzi

The two Chief Systems

- I. The SM is valid up to $\Lambda_{UV} \gg TeV$
- B, L and Flavor: beautifully in accord with observation
- Higgs mass & C.C. hierarchy point beyond naturalness
 - multiverse
 - cosmological relaxation, Nnaturalness, ...
 - failure of EFT ideology (UV/IR connection)

II. Naturalizing New Physics appears at $\Lambda_{UV} \sim 1 \, {\rm TeV}$

• Constraints on B, L, Flavor & CP met by clever model building

Is our world natural?

- Will probe naturalness to levels of 10⁻³ with Higgs couplings
 - Down to 10⁻²-10⁻⁴ with direct searches

Conclusions

- Amazingly exciting world of particle physics
 - So many questions... so many experiments to do...so many challenges!
- Hard to know where the next breakthrough is....
 - But let's break through … even if it is difficult… and takes a while!

Conclusions

- Amazingly exciting world of particle physics
 - So many questions... so many experiments to do...so many challenges!
- Hard to know where the next breakthrough is....
 - But let's break through … even if it is difficult… and takes a while!

Eliud Kipchoge, Oct. 12th 2019 "No human is limited"

Backup

Is there a Singlet?

- Scalar singlet
 - May or may not mix with H boson
 - Mass below or above m_H
- Could address several questions:
 - Order of electroweak phase transition
 - Dark matter
 - **—** ...
- Future experiments will probe very interesting parameter space

Electroweak Precision Data

Huge improvements with future e+e- colliders ("Tera-Z")

S and T parameters

Measurement of Higgs Self-Coupling: Lepton Colliders

- Di-Higgs processes at lepton colliders
 - ZHH or VBF production complementary

- Single-Higgs production sensitive through loop effects, e.g. for $\kappa_{\lambda}=2$:
 - Hadron colliders: ~3%
 - Lepton colliders: ~1%

AMS positron flux

- AMS sees increase in positron flux as function of energy
- One possible explanation: DM annihilation to $\tau^+\tau^-$ or $\mu^+\mu^-$ pairs
 - These subsequently decay to electrons
- Another explanation: astrophysical sources, e.g. pulsars

Dark Matter searches compared

Comparing direct detection and Higgs constraints

Dark Matter can be scalar, vector or fermion:

Scalar:
$$\Delta \mathcal{L}_S = -\frac{1}{2} m_S^2 S^2 - \frac{1}{4} \lambda_S S^4 - \frac{1}{4} \lambda_{hSS} H^{\dagger} H S^2$$
,

Vector:
$$\Delta \mathcal{L}_V = \frac{1}{2} m_V^2 V_\mu V^\mu + \frac{1}{4} \lambda_V (V_\mu V^\mu)^2 + \frac{1}{4} \lambda_{hVV} H^\dagger H V_\mu V^\mu,$$

Fermion:
$$\Delta \mathcal{L}_f = -\frac{1}{2} m_f f f - \frac{1}{4} \frac{\lambda_{hff}}{\Lambda} H^{\dagger} H f f + \text{h.c.}$$
 (5)

$$BR_{\chi}^{inv} \equiv \frac{\Gamma(H \to \chi \chi)}{\Gamma_H^{SM} + \Gamma(H \to \chi \chi)} = \frac{\sigma_{\chi p}^{SI}}{\Gamma_H^{SM}/r_{\chi} + \sigma_{\chi p}^{SI}}$$

With
$$r_\chi = \Gamma(H o \chi \chi)/\sigma_{\chi p}^{\rm SI}$$

Let there be a singlet

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} S)(\partial^{\mu} S) - \frac{m_s^2}{2} S^2 - \frac{a_s}{3} S^3 - \frac{\lambda_s}{4} S^4 - \lambda_{hs} \Phi^{\dagger} \Phi S^2 - 2a_{hs} \Phi^{\dagger} \Phi S \qquad \langle \Phi \rangle = (0, v/\sqrt{2}), \quad \langle S \rangle = v_s$$

$$\langle \Phi \rangle = (0, v/\sqrt{2}), \quad \langle S \rangle = v$$

Mixing between S and H:

$$\sin 2\theta = \frac{4v(a_{hs} + \lambda_{hs}v_s)}{M_h^2 - M_s^2}$$

 Z_2 symmetry: $a_{hs} = v_s = 0$

=> No mixing between H and S

If $M_s < M_H/2 => H \rightarrow SS$ decay possible

- Z_2 symmetry: $S \rightarrow invisibly$
- $\sin\theta \neq 0$:
 - $S \rightarrow f\bar{f}$ with $y_{f,S} = sin\theta y_{f,H} =>$ direct searches
 - $S \rightarrow$ undetected is also sensitive in global fit

Let there be a singlet

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{2} (\partial_{\mu} S)(\partial^{\mu} S) - \frac{m_s^2}{2} S^2 - \frac{a_s}{3} S^3 - \frac{\lambda_s}{4} S^4 - \lambda_{hs} \Phi^{\dagger} \Phi S^2 - 2a_{hs} \Phi^{\dagger} \Phi S \qquad \langle \Phi \rangle = (0, v/\sqrt{2}), \quad \langle S \rangle = v_s$$

Mixing between S and H:

 $\sin 2\theta = \frac{4v(a_{hs} + \lambda_{hs}v_s)}{M_r^2 - M^2}$

$$Z_2$$
 symmetry: $a_{hs} = v_s = 0$

=> No mixing between H and S

 $\mu_i^f - 1 \ge 0.6\%$.

If $M_s > M_H/2$ and $\sin \theta \neq 0$

- all H couplings modified => BR unaffected
- Total production cross section modified $\mu_i^f \approx \cos^2 \theta$.

For 1st order ewk phase transition (Katz, Perelstein, arXiv:1401.1827):

	Δμ (%
now	7.8
HL-LHC	1.5-
LC	0.7
-CC-ee	0.5
CLIC	0.24

Perturbative QCD at the LHC

- Important consistency check
 - Actually some tension between tt data and other data seen in QCD fits

Long-Baseline Experiments in Japan and USA

Hyper-Kamiokande

LHC Roadmap

Future Colliders

Proposed colliders:

- Linear e+e-: ILC, CLIC
- Circular e+e-: FCC-ee, CePC
- pp: HE-LHC, FCC-hh, SppC
- ep: LHeC, FCC-eh

Future Colliders: Vs and tentative timescales

Sensitivity to κ_{λ} at HL-LHC

- 50% sensitivity at HL-LHC....
- Sensitivity very relevant for probing order of phase transition!

New physics with heavy quarks

Sensitive to many models of new physics

What about right-handed neutrinos

Minkowski (77); Gell-Mann, Ramond, Slansky; Yanagida; Glashow; R. N. M., Senjanovic (1979)

- Seesaw mechanism could explain $m_{
 m v} \ll m_e$
- Requires heavy RH neutrino: $M_R/g \gg v$
 - typically at GUT scale but could be lower but could be lower if g very small

Probed by e.g. beam dump & collider experiments

Total, Inelastic and Elastic Cross Sections

