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Abstract

Ultra-low emittance lattices are being studied for the fu-

ture upgrade of the SOLEIL 2.75 GeV storage ring. The

candidate baseline lattice is inspired by the ESRF-EBS type

MBA lattice, introducing a −I transformation to compen-

sate the nonlinear impact of sextupoles thanks to the lattice

symmetry and tight control of the betatron phase advance

between sextupoles. Whilst its performance is under study,

other types of lattices are being developed for SOLEIL: in

particular, the so-called High-Order Achromat (HOA) lat-

tice. Though the −I scheme provides a large on-momentum

transverse dynamic aperture in 4D, its off-momentum per-

formance is limited. Further studies in 6D reveal intrinsic

off-momentum transverse oscillations, which are considered

to result from of a nonlinear increase of the path length. The

effect of the inhomogeneous sextupole distribution in the

−I scheme shall be presented and compared with the HOA

lattice under study.

INTRODUCTION

Towards the 4th generation of storage ring-based light

sources, several ultra-low emittance lattices are considered

to increase the brilliance of the photon sources. Due to being

an upgrade, both circumference and energy are fixed for the

existing machines: low emittance thus is obtained by MBA

cells and strong focusing, leading to small dispersion and

large natural chromaticity whose correction must now be

integrated as a part of the lattice design.

Two chromaticity correction schemes are considered for

the SOLEIL upgrade. The baseline lattice [1] uses the −I

transformation, setting a ((2k + 1)π, nπ) phase advance be-

tween two sextupoles (with k, n integers) for kick cancella-

tion and optimised on-momentum acceptance, along with

dispersion bumps at the location of the sextupoles for their

increased efficiency and for global chromaticity correction.

By contrast, local chromaticity correction is the aim of the

so-called HOA lattice [2], built in several identical small

cells, where phase advance is chosen to cancel geometric

resonances over the MBA cell. Table 1 gathers the main

characteristics of both lattices.

Despite its large on-momentum acceptance, the baseline

lattice which is based upon the −I transformation principle,

presents a reduced effective dynamic aperture, as shown in

Fig.1 when the synchrotron motion is taken into account in
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the tracking [1]: a strong coupling between the longitudinal

and the transverse planes makes a particle go off-energy

each turn – by increased path length, and falls out of the

off-momentum acceptance. Such an effect is not explicitly

seen in the HOA lattice.
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Figure 1: Transverse on-momentum dynamic aperture of

a −I cell, with natural chromaticities. In red, the lattice

without RF, in blue, RF system added, with a voltage of 1.1

MV.

To understand this effect, and in order to reduce it, the

path lengthening due to large amplitude betatron motions is

studied in both lattices. The concerned effect depends on

the chromaticity (ξx, ξy) in both planes [3]:

∆C = −2π(Jxξx + Jyξy), (1)

where Jx and Jy are the horizontal and vertical action vari-

ables, respectively. The path length of both schemes is de-

Table 1: Lattices Characteristics

Chromatic correction

scheme

−I HOA

Energy 2.75 GeV 2.75 GeV

Symmetry 20 20

Tunes (νx, νy) (55.2, 18.2) (65.6, 24.6)
Natural emittance

ϵx (pm rad)

72 77

Momentum com-

paction factor αC

1.47E-4 1.09E-4

Energy spread 8.6E-4 7.8E-4



rived using the 6D tracking modules available in Accelerator

Toolbox and averaged over the input phase, after one turn to

avoid any lost particle.

Figure 2 compares the tracked path length of each lattice

with the theoretical path length in Eq. (1) at a corrected

chromaticity (ξx, ξy) = (1, 1). As no path lengthening is ex-

pected at small betatron amplitudes when the chromaticity

is fully corrected, the −I scheme exhibits a clear deviation

from the expectation. The aim of this study is to analyti-

cally pursue the tracked averaged path length, for the low

emittance lattices.
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Figure 2: Path lengthening effect observed in the −I (in

green) lattice, for a corrected chromaticity (1, 1). The path

length averaged over the input phase, follows a rule different

from the known chromatic dependence in Eq. (1) (in red).

The effect is less prominent in the HOA lattice (in blue).

FIRST-ORDER PERTURBATION THEORY

To understand this phenomenon, this paper refers to the

canonical perturbation method used by M. Takao in [3], de-

veloped to recover the usual path lengthening formula in

Eq. (1), by treating sextupoles as a perturbation to derive

an averaged distorted transverse trajectory. The method is

extended to first order in perturbation in the angular contri-

bution in ∆C, ⟨x ′2⟩. The perturbed Hamiltonian considered

is:

H =
p2
x + p2

y

2
+

1

2
(k2

x + g0)x2 − 1

2
g0y

2

+

g1

3!
(x3 − 3xy2) + 1

2
kx x(p2

x + p2
y),

(2)

where where px,y are the transverse beam momentum com-

ponents, kx is the horizontal curvature, g0 and g1 the

quadrupole and sextupole strengths respectively. For the

sake of ease in calculations, the following part is limited to

the horizontal plane.

Averaged horizontal trajectory ⟨x⟩ Using the canonical

perturbation theory described in [4], the distortion of the

averaged trajectory coordinates (x, x ′) can be derived ac-

cording to dipolar and sextupolar gradients.

⟨x(s)⟩φx
= − Jx

√
βx

4 sin(πνx)

∫ s+C

s

ds′
√

βx

× (g1βx + kxγx) cos
(

ψx(s′, s)
)

−
Jy
√
βx

4 sin(πνx)

∫ s+C

s

ds′
√

βx

×
(

−g1βy + kxγy
)

cos
(

ψx(s′, s)
)

− Jx
√
βx

2 sin(πνx)

∫ s+C

s

ds′kxβ
−1/2
x αx

×
(

sin
(

ψx(s′, s)
)

+ αx cos
(

ψx(s′, s)
))

+

Jx
√
βx

4 sin(πνx)

∫ s+C

s

ds′kxβ
−1/2
x cos

(

ψx(s′, s)
)

,

(3)

where (φx, Jx) are the action-angle coordinates, βx,y , αx,y

and γx,y the Twiss parameters, ψx(s′, s) = φx(s′) − φx(s) −
πνx , and νx the tune. Figure 3 demonstrates the good coinci-

dence between the tracked mean trajectory and the analytical

calculations.
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Figure 3: Averaged perturbed trajectory over one HOA cell:

tracked (green lines) and calculated using Eq. (3) in black

dots. The good match between the analytical calculation and

the tracking ensures the convergence of the integrals over

the ring.

Averaged horizontal angle ⟨x ′2⟩ The second trajectory co-

ordinate x ′ is derived from the Hamiltonian, considering that

the perturbation is sufficient to differentiate the trajectory

angle from the momentum: x ′
=

dx
ds
=

∂H
∂px

= px (1 + kx x).
Following the same procedure as in [4], the contribution of

the distorted trajectory angle in the path length is derived up

to the first order in perturbation:

⟨x ′2(s)⟩φx
= Jxγx + k2

xα
2
x J2

x + J2
x k2

x

βxγx

2

+ 2kxαx

√

2Jx

βx

(

1 +

√
Jx

2

)

P1 + kx

√

2Jx

βx

(

1 +

√
Jx

2

)

P2,

(4)



where P1 and P2 are defined by:

P1 =
J

3/2
x

4
√

2 sin(πνx)
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s
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×
(
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1
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)
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×
(

sin
(
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))
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3/2
x

2
√

2 sin(πνx)

∫ s+C

s

ds′kx
√

βxγxαx

× (αxαx(s) + 1) cos
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3/2
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+

J
1/2
x Jy

4
√

2 sin(πνx)
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(5)

and
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3/2
x

4
√
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s
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(
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(6)

HIGHER ORDER AVERAGED PATH

LENGTHENING

Figure 4 compares the path length a function of the chro-

maticity Eq. (1), the 6D-tracked mean path length per turn

and the application of the enlarged theory in the previous

section. The tracked path length is obtained using 6D track-

ing over one turn, and averaging on the input phase, ensuring

that the particles remain in a stability zone.

The analytical calculation of Eqs. (3) and (4) requires two

levels of integration and convergence, obtained by slicing

the lattice elements into 10, over the longitudinal coordinate

s,

∆C =

∫ s0+C

s0

ds

(

kx ⟨x⟩ +
⟨x ′2⟩

2

)

. (7)
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Figure 4: Averaged path lengthening considering the three

described methods – linear formula (1) in red, 6D tracking

of the −I lattice in green and perturbated path length using

Eqs. (3), (4)and (7), for corrected chromaticity (1, 1).

Higher-order terms will be required to describe the tracked

path length of the low emittance lattices under study, as the

first-order theory remains close to the general chromatic

theory. The second order in perturbation, neglected in this

contribution for the sake of simplicity, appears to be respon-

sible for the path length effect in the low emittance lattices.

PERSPECTIVES

Considering that the first-order perturbation is not enough

to describe the path lengthening observed in the −I schemed

lattice, including higher order perturbations should provide

a better agreement with path length tracking results. Fur-

ther studies including higher orders are ongoing and will be

presented in future papers.

Provided that the extension of the present treatment

achieves improved agreement, we shall attempt to reduce or

even cancel the path lengthening effect observed in the −I

lattice. This optimisation may be done, either analytically or

numerically using sextupoles, under the constraint of correct-

ing the chromaticity, in order to restore its on-momentum

performance.
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