

⇔ Physique subatomique

⇔ Imagerie

- Composition et partenaires de l'équipe de l'IPHC
- Quelques résultats :
 - ⇒ Détecteurs de vertex et télescopes de faisceau
- Perspectives : Technologies d'intégration 3D
- Atouts des capteurs CMOS pour XFEL

▷ Plus d'information sur le site: http://iphc.cnrs.fr/-Publications-Presentations-.html

Activité de R&D initiée en 1999 pour les expériences de physique subatomique du futur

→ Nécessité d'une nouvelle génération de détecteurs à pixels, beaucoup plus performants que l'état de l'art, pour les grandes expériences (TGE) de physique subatomique des années 2020 Objectif No 1 : Collisionneur Linéaire à électrons = accélérateur post-LHC

structure en temps des faisceaux comme XFEL

 \Rightarrow Programme de longue haleine procédant par étapes \equiv paliers en performances \hookrightarrow Applications connexes à plus court terme et moins exigeantes

Equiper des détecteurs de position de très haute résolution pour la physique subatomique :

- ⇔ Expérience STAR (RHIC Brookhaven) → 2008 / 2009
- ⇔ Expérience CBM (GSI Darmstadt) → 2011
- \Rightarrow Expérience au Collisionneur Linéaire à électrons \rightarrow 2012/13
- ⇔ Télescopes de faisceau du projet FP7 EUDET (DESY-Hamburg) → 2008

Equiper des imageurs pour la microscopie électronique, les systèmes de contrôle, etc. :

- ⇔ Imageur bio-médical pour neuro-sciences, embryogénèse, etc., avec Photonis-DEP (G.I.S.)
- ⇔ Caméra pour SAGEM (G.I.S.)
- ⇔ Caméra d'assistance chirurgicale en oncologie (avec universités américaines)
- *⇔ Etc.*

Propriétés et Avantages des Capteurs CMOS

Si basse résistivité (type p) avec puits de coll. (type n)

- Signal créé dans couche épitaxiée (dopage faible):
 - Q \sim 80 e-h / $\mu m \mapsto$ signal \lesssim 1000 e $^-$
- Collection de charge par jonctions n-well/p-epi
 - → les porteurs de charge diffusent thermiquement vers les jonctions, aidés par les réflexions sur les interfaces avec les puits p et le substrat (dopage élevé)
- Existe en version substrat "Hi-Res" (sans épitaxie !)

Avantages spécifiques des capteurs CMOS:

- \diamond μ circuits de conditionnement du signal intégrés dans substrat du capteur (System-on-Chip) \mapsto compact, flexible
- \diamond Epaisseur du volume sensible (\sim couche épitaxiée) \sim 10–15 μm \longrightarrow amincissement à \sim 30–40 μm permis
- ♦ Technologie de production standard de masse → runs (multi-projets) fréquents, coûts de R&D réduits
- ♦ Fonctionnement à température ambiante

> Compromis attrayant entre granularité, budget de matière, radio-tolérance, vitesse et consommation

Mais: \simeq volume sensible mince \Rightarrow signal de faible amplitude (mV!)

- $rightarrow volume sensible \sim$ non déplété \Rightarrow impact sur la radio-tolérance & la vitesse

2 modes de lecture des capteurs :

- ◇ Balayage périodique (Rolling Shutter cf ci-dessous): la matrice est lue rangée après rangée
 - \hookrightarrow chaque rangée est légèrement décalée en temps par rapport aux autres
- ♦ Lecture instantanée (Snap-shot surtout pour l'imagerie): toutes les rangées sont lues simultanément
 - \hookrightarrow temps mort lié au mode pulsé des transistors et à la lecture de la matrice

Readout

▷▷▷ lecture "verticale" simultanée de tous les pixels → technologies d'intégration 3D

R&D adossée à une activité intense de conception de Micro-Circuits :

- 15 concepteurs de μ circuits (8 permanents)
- 4 ingénieurs tests µcircuits (tous permanents)
- 9 chercheurs et enseignant-chercheurs (4 permanents)

Partenaires :

- équipes de micro-électronique de l'IN2P3 et du CEA/Saclay
- équipe de l'IPN-Lyon (cahier des charges et caractérisation d'imageurs EB-CMOS)
- labo de micro-électronique du Fermi Lab (Chicago)
- Instituts de micro-électronique de Dalian et Xi-An (Chine) >>> Accords de coopération universitaires
- Universités et laboratoires européens (DESY/Hamburg, CERN/Genève, GSI/Darmstadt, etc.)
- labos de biologie: LKB/Paris, IGBMC/Strasbourg, EMBL/Heidelberg, INAF/Gif-sur-Yvette
- Universités américaines (Ohio, ...)
- Industriels ou assimilés : Photonis-DEP, SAGEM, Instituts Fraunhofer, IMEC, CMP/Grenoble, ...

- Une trentaine de capteurs différents fabriqués depuis 1999, testés en labo et sur faisceau de particules $^\pm$:
 - bruit →→ rapport signal/bruit →→ efficacité de détection (vs température)
 - résolution spatiale (et épaisseur → amincissement
 - tolérance aux rayonnements intenses $\makebox{ } > \ \gtrsim$ 1 MRad, $\$ O(10 13 n $_{eq}$ /cm 2)
 - rapidité \mapsto sorties numérisées avec suppression des 0 si fréquence de lecture \gtrsim 1000 fps
 - puissance dissipée \rightarrow typiquement O(100 mW/cm 2)
 - ⇒ exploration continue des caractéristiques des techno. proposées par les fondeurs et des techniques de conditionnement (amincissementS, découpe ss bords amorphisés, câble minces, enveloppes fines, ...)

● Principal motif actuel de R&D : vitesse ⇒ maximum de fonctionnalités intégrées dans le capteur

Trajectométrie : Applications à Court ou Moyen Terme

Extension du détecteur de vertex de l'exp. STAR (RHIC/BNL)

- 2 couches cylindriques : \sim 1600 cm 2
- $\bullet~\gtrsim$ 160 millions de pixels (pitch = 30/18 μm)
- 3 étapes :

CMOS-XFEL

- ♦ 2007: télescope (3 capteurs) installé dans l'exp.
 - \hookrightarrow taux de comptage mesuré, pas de pick-up !

- $\diamond~$ 2008: 2 ou 3 secteurs (8 ou 12 échelles) avec capteurs à signaux numérisés sans Ø (\leq 640 μs)
- \diamond 2010: tout le détecteur avec capteurs à Ø intégrée (\leq 200 μs)

Télescope de faisceau (projet EUDET/FP6)

- 2 bras de 3 plans (plus 1 plan de haute résolution)
- $\circ \sigma_{extrapol.} \lesssim$ 1 μm avec e $^-$ (3 GeV, DESY)
- 2 étapes :
 - ♦ 2007: capteurs à signaux analogiques
 - \hookrightarrow télescope mis en service \rightarrowtail déjà exploité
 - \diamond 2008: capteurs à signaux numérisés avec Ø intégrée
 - \hookrightarrow temps de lecture \sim 100 μs

Avantages des capteurs CMOS pour l'imagerie :

- μ circuits de pré-conditionnement du signal intégrés dans le capteur
 - \hookrightarrow bruit très faible \Rightarrow sensibilité accrue (photon unique)
 - ← vitesse de lecture élevée
 - \hookrightarrow intégration simple \Rightarrow souplesse \Rightarrow applications variées & nombreuses
- \Rightarrow Photo Détecteur Hybride (HPD) : Sensibilité \sim 1 photon / ms / pixel

Imageur EB-CMOS pour la recherche en biologie cellulaire:

- MIMOSA-5 (1 Megapix, pitch 17 μm , 3.5 cm², 30 Hz) débarrassé du substrat, intégré dans enceinte à vide munie d'une photo-cathode (Photonis-DEP)
- comptage individuel des photo-électrons de quelques keV démontré

Imageur (EB-CMOS) pour des applications sociétales :

- caméra pour portiques de sécurité, etc. (SAGEM)
- assistance chirurgicale: localiser cellules cancéreuses résiduelles (Univ. Ohio)
- moniteur de faisceau pour l'oncothérapie (projet SUCIMA / FP5)
- etc.

Objectif : temps de lecture \lesssim 20 - - - - 200 $\mu s \implies$ capteurs constitués en colonnes de pixels lues en //

Stratégie : 3 lignes de R&D simultanées \rightarrowtail 3 types de μ circuits

architecture des matrices de pixels organisées en col. lues en //

ightarrow 1 μ circuit de CDS par pixel et 1 discriminateur par colonne :

▷ collaboration avec CEA/IRFU-Saclay depuis 2002

←→ *MIMOSA-8 (2004), MIMOSA-16 (2006), MIMOSA-22 (2007/08)*

• μ circuits de Ø et mémoires de sorties : SUZE-01 (2007)

- ADC de 4–5 bits (1000 ADC de 20imes500 μm^2 par capteur !)
 - > pouvant remplacer (ou compléter) chaque discriminateur
 - ▷ R&D avec LPSC-Grenoble, IRFU, (LPCC) depuis 2005
 - \vartriangleright encodage 3–5 bits simulé sur données réelles collectées avec m.i.p. (MIMOSA-9 pitch 20 μm)

 $\hookrightarrow \sigma_{\mathbf{sp}} <$ 2 μm (4 bits) \mapsto 1.7–1.6 μm (5 bits)

M22 digital S6. Efficiency, Fake rate and Resolution

Objectif :
 miniaturiser pour aller beaucoup plus vite

⇔ faire disparaître les zones périphériques non sensibles pour couvrir de grandes surfaces

- Séparer la collection du signal et les différentes étapes de son conditionnement :
 - Tier-1: système de collection des charges
 - Tier-3: conditionnement mixte du signal
- Tier-2: conditionnement analogique du signal
- Tier-4: conditionnement numérique du signal
- Tier-5: extraction (optique?) du signal
- Utiliser la technologie la plus appropriée pour chaque feuille (Tier)

▷▷▷ Premiers prototypes prévus pour le printemps 2009

CMOS-XFEL

Applications des Capteurs CMOS a l'Imagerie X(FEL)

 \triangleright

 \triangleright

Intérêts des capteurs à pixels CMOS pour XFEL :

- haute résolution * minceur * surface * vitesse * ...
 - \rightarrowtail monitorage de faisceaux ? détecteurs de position ?

surfaces \gtrsim 10 cm² : aboutement industriel (rendement, coût) \triangleright ou découpe sans bords amorphisés (en laboratoire)

- architecture de conditionnement du signal avec lecture différée développée pour l'ILC (même structure en temps que XFEL)
- substrat high-res: amincissement à 30–50 μm pour X mous
- perspectives du CMOS : couche épitaxiée déplétée →→ sensibilité, résolution spatiale
- perspectives des 3DIT : lecture de qques 10^5 images /s \rightarrow O(10^8) impacts /cm² / s (?)

Tester les performances d'un capteur à sorties analogiques très précis (MIMOSA-18)

en faisceau (monitorage) ou comme détecteur de position

- surface sensible : 5.5 x 5.5 mm^2
- nb de pixels : 256,000
- pixels de 10 x 10 μm^2
- fréquence d'encodage : 350 fps
- épaisseur \sim 50 μm

Tester les performances d'un capteur à sorties numérisées (\emptyset intégrée) rapide (MIMOSA-26) en faisceau (monitorage) ou comme détecteur de position

- surface sensible : 21 x 10.5 mm^2
- *nb de pixels : 660,000*

- fréquence d'encodage : 9,000 fps
- pixels de 18.4 x 18.4 μm^2

Réaliser un dispositif mixte :

réseau d'aiguilles de CsI (conversion des X) monté sur un capteur MIMOSA

BACK-UP SLIDES

Numerous different chips addressing 2 types of topics :

- ♦ Various generic issues influencing detection performances
 ♦ Specific application requirements
 - fabrication technology details: epitaxy thickness, doping profile, *l*_{leak}, yield, ...
 - pixel design: charge collection, leakage current removal, ion. rad. tol. design, ...
 - signal processing μ circuits: CDS/pixel, discri. & ADC at column end, Ø μ circuits, ...
 - repeat small prototype design with large sensors : yield, capacitive effects, offeset dispersion, ...
 - optimise generic design for each specific application : develop chips dedicated to each application

20 MIMOSA sensors designed, fabricated in 7 different fabrication technologies:

- AMS-0.6 μm : MIMOSA-1, MIMOSA-5 MIETEC-0.35 μm (became AMI-0.35 μm): MIMOSA-2 and -6
- IBM-0.25 μm : MIMOSA-3 TSMC-0.25 μm : MIMOSA-8 and -10 STM-0.25 μm : MIMOSA-21,-21A,B,C
- AMS-0.35 μm without epitaxial layer: MIMOSA-4, -12 and -13
- AMS-0.35 μm OPTO with epitaxial layer: MIMOSA-9, -11, -14, -15, -16, -17, -18, -19, -20 and -22

Specific difficulties:

- ♦ Analog part of most sensors cannot be simulated reliably (lack of doping profile details, etc.)
- ◇ R&D addresses simultaneously detection system & signal processing parts integrated on same substrate

Industrial thinning (via STAR coll. at LBL) $\rightarrow MIMOSA-18$ (5.5×5.5 mm² thinned to 50 μm)

Devt of ladder equipped with MIMOSA chips (coll. with LBL) : STAR ladder (\lesssim 0.3 % X $_0$) \mapsto ILC (< 0.2 % X $_0$)

High precision packaging technologies : \rightarrow *mount* & connect \leq 5 MIMOSA-18, thinned to 50 μ m, on support made of industrial diamond, thinned to 50–100 μ m and aluminised \equiv mecha. support & heat extractor & cable \rightarrow project started in 2007: diamond (50–100 μ m) fabricated \rightarrow assembly of MIMOSA-18 sensors under way

Beam time structure : \sim 1 ms train (\sim 3000 BX) every 200 ms \Rightarrow duty cycle \sim 1/200

- ▷ 2 consequences :
 - 1) Switching off the sensors between trains may allow average power reduction by factor of \sim 100
 - ⇒ essential for material budget (modest cooling) also: room for high density functionnalities integrated inside sensitive area (pixels)
 - 2) Only a few BX contain relevant physics info.
 but all contain large amounts of beam background

 ←→ remove unrelevant BX !

Electro-Magnetic Interference from bunch wake field :

- \diamond beam delivery elements may be source of very short λ EM field
- \diamond specific sensor architecture : store signal during train (\sim 1 ms) and read out after train
 - \Rightarrow large nb of memories \Rightarrow short time slices \Rightarrow better background rejection

 \hookrightarrow 3DIT may allow a big step towards this goal

- Problématique: microscopie de la dynamique cellulaire rapide à basse luminosité
 - ← comportement et interaction de molécules biologiques dans leur environnement cellulaire

• Cahier des charges type:

- o imageur (capteur CMOS) intégré dans un Photo-Détecteur Hybride (HPD)
 - \mapsto détecte des e⁻ émis par photocathode
 - \hookrightarrow développer un capteur sensible aux e⁻ de qques keV !!!
- \diamond surface de l'imageur: qques cm²
- \diamond résolution intrinsèque < 10 μm
- \diamond S/N > 3
- \diamond sensibilité \leq 2 photons / 10 x 10 μm^2 / ms
- \diamond taux d'images \sim 1000 fps \mapsto conditionnement du signal dans capteur
- \diamond horloge effective au niveau des pixels: \lesssim 10 MHz

• Cadre – collaboration:

- ◊ Groupement d'Intérêt Scientifique (GIS) entre l'IN2P3 (IPHC IPNL) & Photonis-DEP
- ◊ IPHC: développement d'un EB-CMOS (= capteur débarrassé de son substrat) rapide
- ◇ IPNL: caractérisation du HPD, développement du système d'acquisition
- ◇ Photonis-DEP: réalisation du phototube incorporant le capteur CMOS

