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The very first magnet!

0,5 Gauss / 5.10-5 T

MAGNETS ARE EVERYWHERE!!!

Permanent magnet

(NdFeB, 0.5T)
Resistive

magnet (2T)

MRI magnet

(Siemens 3T)

LHC Dipole

(8,3T)Bruker 1 GHz NMR 

(23,5T )

NHMFL 

Tallahassee 

Hybrid magnet 

(40 T)

ISSP (Japan)

(750 T)

VNIIEF MC-1 (Russia)

2,8 kT
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AND A LOT OF APPLICATIONS!
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WHY SUPERCONDUCTIVITY ?

Gilles Holst, student of Kamerlingh Onnes writes a short note to the 

Royal Academy of the Netherlands on April 8th, 1911 : 

… thus the mercury at 4.2 K has entered a new state, which, owing

to its particular electrical properties, can be called the state of

superconductivity…

Ohms’ law is not longer valid!

 Low electrical consumption
(mainly to operate the cryogenic system)

 High current density

 Compact winding can be used to generate high magnetic 
fields in a large volume

1933: Meissner and Ochsenfeld discover perfect 

diamagnetic characteristic of superconductivity

http://en.wikipedia.org/wiki/File:Kamerlingh_portret.jpg
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A LARGE CHOICE OF SC MATERIALS

NbTi Nb3Sn, Nb3Al

BSCCO

YBCO

MgB2

Large variety of wires/tapes/cables



6Conductor Source: http://fs.magnet.fsu.edu/~lee/plot/plot.htm

Jeng in LTS and HTS conductors at 4.2K and 1.9K 
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A LARGE CHOICE OF SC WIRES AND CABLES…

NbTi
• Dominant commercial superconductor
• MRI is biggest user of NbTi SC wire
• Bendable, ductile, low cost ($1/kA.m)
• Tc=9,3K, Bc2=11,4 @ 4,23K

Nb3Sn
• Primary high field SC
• Brittle
• Tc=18K, Bc2 ≈ 23-29K
• Higher cost (x 5 price of NbTi)

MgB2
• Brittle
• Tc=39K, Bc2=40T
• Higher cost (x 5 price of NbTi)

Technology based on ReBCO super expensive (x 10 to 20) 
and not mature enough for large industrial applications

Cost is a key driver!
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How physicists depict the CMS 

detector…
How engineers built it…

MAGNET OPTIMISATION IS A COMPLEX PROBLEM…
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MAGNETIC FIELD SPECIFICATION

The specification has to define several parameters

• Central field value (usually the highest…)

• Magnet aperture (usually the largest…)

• Magnet outer dimensions (usually the smallest…)

• Useful area or volume (usually the largest…)

• Field quality (dipole uniformity, field gradient, field 

integral, sagitta, momentum resolution,…)

• Fringe field (low, even close to the magnet)

• Operating mode (AC/DC)
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RELEVANT PARAMETERS

Main parameters from the specification: Field B, length L, radius R

Parameters relevant for the physics

. B,  BL (deflection), dmB/dmR (gradients), BL2 (sagitta), BL2 (momentum

resolution), B3R2, etc…

Parameters relevant for the magnet designer

. B2 R (mechanical forces)

. B2 R/e, with e coil thickness (stresses , protection in case of quench)

Parameters relevant for the ressource manager

. Cost : C = α (RL) 0.8 +  (B2 R2 L)0.7  (from A. Hervé)

C(M$) = 0.5(Es(MJ))0.662

C(M$) = 0.4(B(T)V)0.635  (from Green and Lorant )
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OPTIMIZATION OF SUPERCONDUCTING COILS

A complex problem…

• Field map specification

• Current transport capacity (choice of conductor)

• Operating temperature and cooling method

• Peak field on the conductor

• Quench protection

• Mechanical stresses 

• Manufacturing techniques

• Economical constraints
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MAIN TECHNICAL CHALLENGES

High magnetic field, high current, large useful volume, large stored energy, high mechanical 

forces and stresses

SC state requires low temperatures

Complex cryogenic system; it has to be optimized (compact, autonomous, minimum consumption)

Protection in case of quench 

• Dissipate the stored energy 

• Manage the quick temperature elevation in the SC system and the high voltages in the coils

Mechanical forces

• High strength/stress must be hold by the conductor and/or the external support structure

• Electrical insulation must also withstand the stress (shear stress in particular)

Advanced manufacturing techniques required

• Superconductors

• Electrical insulation

• Challenging manufacturing techniques

Dimensions:

• Manufacturing  dimensions and tolerances, handling

• Road transportation Rmax ~ 3.5 m
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Accelerator magnets for LHC

MQ MQYY

MRI magnet: ISEULT

NbTi
FRESCA 2

Nb3Sn

Dipole and Quad for FCC

Technology development

MgB2

HTS => ReBCO

For high field magnets

For accelerator

magnets

EUCARD

EUCARD2

LOTUS: radio isotope 

production

Conductor characterization

Other Accelerator Magnet

SARAF SuperFRS

Special magnet

WAVE: neutron diffraction=> 

condensed matter physics

MAGNET PROJECTS AT CEA
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MAGNET PROJECTS AT CEA

Accelerator magnets for LHC

MQ MQYY

NbTi
FRESCA 2

Nb3Sn

Dipole and Quad for FCC

Technology development

MgB2

LOTUS: radio isotope 

production

Conductor characterization

Other Accelerator Magnets

SARAF Super FRS

Special magnet

WAVE: neutron diffraction=> 

condensed matter physics

HTS => ReBCO

For high field magnets

For accelerator

magnets

EUCARD

EUCARD2

MRI magnet: ISEULT
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WHY USING MAGNETIC FIELDS IN PARTICLE ACCELERATORS?

A magnet creates a force that acts on any other magnet, electric current, or 

moving charged particle.

Dipoles to bend the beam:
Quadrupoles to focus it:

Sextupoles to 

correct chromaticity:

Example of magnetic configurations 

(room temperature magnets)
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WHAT’S NEXT AFTER THE LHC…

• Need to increase the field, while reducing the cost

• Not just innovations… But real breakthroughs are needed!

100 TeV !

Magnet cost: 8T-60%; 16T-70%-20T-80%

The Future Circular Collider
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FRESCA 2 (NB3SN)

THE FCC!

Iron yoke

Keys

Bladders

Vertical Pad 

Central 

pole (Ti)

Horizontal 

pads (SS)

Tie-

rods
Coils

Outer cylinder
( aluminum)

Pad vertical
( iron + SS)

Central field 13T @ 4.2K

15T @ 1.9K

Bore aperture 100 mm

Length 1.6 m

Outer Diameter 1.03 m

Weight 10.6 t
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FRESCA 2 (NB3SN)

14.6T obtained in April 2018 (World record)
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MAIN DIPOLE STUDIES (16T)

AND ASSOCIED R&D

Cos-theta
blockcommon-coil

Cos(theta) - Fermilab CCT LBNL

Swiss contribution

via PSI

Canted Cos-theta (CCT)

common coil - BNL
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DIPOLE BLOCK DESIGN FOR EUROCIRCOL

Within the ECC program => CEA Saclay in charge of the double aperture block-type configuration

Aperture 50 mm

Iop 10176 A

LL margin HF 14.0 %

Bbore 16 T

Bpeak HF 16.7 T

sx / sVM

RT loading -147 / 136 MPa

Cool-down -180 / 165 MPa

Excitation -185 / 167 MPa

2D magnetic model 3D magnetic model

2D mechanical model

• Design Study ECC

• Fabrication experience with FRESCA2

FRESCA2
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DIPOLE MODEL TOWARD FCC

CERN-CEA collaboration agreement to design and fabricate a single aperture block model at CEA

 FCC Flared-ends Dipole Demonstrator: F2D2 => as close as possible to ECC

2D magnetic

parameters

Iop 10469 A

LL margin HF 14.0 %

LL margin LF 15.4%

Bbore -15.54 T

Bpeak HF 16.20 T

Bpeak LF 11.85 T

b3 at nominal 2.98

b3 at injection -14.80

b5 -0.50

b7 -2.98

b9 -1.46

Conductor parameters HF                  LF

Strand diameter 1.1 mm 0.7 mm

Cu/nonCu ratio 0,8 2

Jc at 4.2 K and 16 T 1200 A/mm2

Cable number of strands 21 34

Unreacted bare cable width 12.579 mm

Unreacted bare cable thickness 1.969 mm 1.253 mm

HT cable thickness dim. change 4.6 % 4.5 %

HT cable width dim. change 1.3 %

Reacted bare cable width 12.74 mm

Reacted bare cable thickness 2.06 mm 1.31 mm

Insulation thickness at 50 MPa 0.150 mm
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DIPOLE MODEL TOWARD FCC

Low Field cable leads (exit)

« traditional » cable path

High Field cable

leads (exit)

Exit jump (layer 3)

Taking the leads out:

• Btw coil 1-2 and 3-1 for coil 3-4

• Toward the aperture for coil 1-2

Key challenge: Coil and tooling engineering 

design

Objectives: fabricate and assemble F2D2 at 

CEA 

• High complexity due to grading

• Baseline scenario: external joints

FRESCA2
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FCC MAIN QUADRUPOLE/SEXTUPOLE/OCTUPOLE

(MQ)
(MS) (MO)
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NB3SN MAGNET TOWARD FCC

FCC MQ (I)

Within CERN-CEA collaboration
• In CEA tradition => design study of main quadrupole for FCC

• Design study:
• 2 layer versus 4 layer designs ?
• Margin of the quadrupoles?

• Conductor definition
• Small aperture => cable windability is a concern

• Reduce complexity of the quad vs the dipoles => 2 layer quad

• 20 % margin (instead of 14 % for the dipoles)

• Nominal gradient of 360 T/m

CABLE PARAMETER FCC quad (v12)

Strand diameter 0.85 mm

Cu/NonCu 1.65

Nb of strands 35

Cable bare width (before/after HT) 15.956/16.120 mm

Cable  bare mid-thick.(before/after HT) 1.493/1.538 mm

Cable width expansion 1.0 % (ECC)

Cable thickness expansion 3.0 % (ECC)

Keystone 0.40°

Insulation thickness per side (5 MPa) 0. 150 mm

MAGNET PARAMETER Values

Nominal current 22500 A

Peak field 10.52 T

Gradient 367 T/m

Loadline margin 20.0 %

Temperature margin 4.6 K

Cable validation

Winding test with

MQXF cable
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NB3SN MAGNET TOWARD FCC

FCC MQ (II)

MAGNET PARAMETER Unit Values

Nominal current A 22500

Peak field T 10.52

Gradient T/m 367

Stored energy (2 apertures) kJ/m 520

Azimuthal force (per ½ coil) kN/m 1740

Radial force (per ½ coil) kN/m 780

Support structure:

Self supported collar

Modeled in Cast3M in 4 steps (in MPa)

Collaring Stress relaxation Cold Powering

peak

average

peak

average

peak

average

peak

average

-101.5

-85.5

-91.4

-76.9

-88.5

-73.2

-111.1

-69.7

Protection

Tiina Salmi TUT

Use of a CLIQ Unit

Hot spot temperature < 350 K (ECC)
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4 MATERIALS

Accelerator magnets for LHC

MQ MQYY

MRI magnet: ISEULT

NbT

i
FRESCA 2

Nb3S

n
Dipole and Quad for FCC

Technology development

MgB2

LOTUS: radio isotope 

production

Conductor characterization

Other Accelerator Magnet

SARAF SuperFRS

Special magnet

WAVE: neutron diffraction=> 

condensed matter physics

HTS => ReBCO

For high field magnets

For accelerator magnets

EUCARD

EUCARD2



27

HTS HIGH FIELD R&D OVERVIEW

Detection/Protection Stability/Homogeneity Mechanics

• Guillaume Dilasser PhD

# Experimental and numerical

studies of screening currents in

REBCO tapes

• Internal R&D

# experimental/numerical study of

different techniques (overshoot,

vortex shaking)

Detection difficult due to very low

propagation velocities during a

quench.

Protection not easy due to very high

energy margin (high Tc)

• Numeric Magnet Safety System,

more accurate and faster (FPGA)

• MI winding co-wound tape is a

strong mechanical reinforcement

• M. ALHarake PhD : mechanical

study of non impregnated

windings at very high fields

Issue for very high-field magnets

(> 30 T)

Ex : JBr > 1000 MPa

J=500 A/mm², B = 40 T, r=5 cm

Remove/replace insulation between

turns :

• NOUGAT project

# HTS insert HTS with

Metal-as-insulation

winding

• Internal R&D “No Insulation-Partial

Insulation –Metal-as-Insulation”

# study of stability/protection/

time constants of different

windings
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due to screening currents generation
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GOAL: 10 T HTS INSERT IN 20 T RESISTIVE

OUTSERT

• 4 years project (oct 2014 -2018)

• Fundings from French National Research Agency (lead LNCMI)

• Collaborative project with CNRS Grenoble (LNCMI, Neel institute)
20 MW

20 T / 160 mm• Double pancakes, 6 mm-w ReBCO

• Metal-as-Insulation winding

• Prototypes (1 SP, 2 DP), codes (current dynamics…)

• 9 DP, ~ 2 kms of conductors

2 DP proto tests

6.93 T + 20 T res
VonMises> 800 MPa

Validation of fabrication, assembly and 

testing techniques and mechanics

NOUGAT insert tests (9DP)

First phase (2018)

12.8 T + 8 T res
Second phase (2019)

@10 T+20 T res VM # 500 MPa

Improve
d cooling
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TOWARD HTS ACCELERATOR MAGNETS: 

EUCARD

PARAMETER
Built

Magnet
Unit

# of turns central coil layer 1 30 turns

# of turns external coils layer 2 24 turns

# of turns external coils layer 3 10 turns

Engineering current density 235 A/mm2

Layer 1
Layer 2

Layer 3

6 co-wound tapes: 2 SC + 4 CuBe
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TOWARD HTS ACCELERATOR MAGNETS: 

EUCARD

Nominal current A 2800

Central field wo / w SCIF 

(screening current induced

field)

T 5.4 / 

4.7

Temperature K 4.2

Stocked energy kJ 12.5

Inductance mH 3.2

Temperature margin K 29

Load line margin % 47

• Tested at CEA Paris Saclay and reached 5.4 T 

• Next step: insertion of EUCARD in FRESCA2

• Preparation is ongoing
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TOWARD HTS ACCELERATOR MAGNETS: 

EUCARD2 COSQ

• Roebel cable 12 x 1.0 mm2 , 15 tapes, 300 mm twist pitch

• 2x125µm insulation, fiberglass

• 17 turns

Unit Cosq In FRESCA 2

Iop kA 10.06 7.1

Bop T 5 2.6 + 13

Ic kA 15.2 7.9

LL margin (%) 34 10

T margin K 30 8

Bore radius mm 24 16

Dummy coil with
SS Roeble cable

Practice assembly

Practice yoke
stacking

Practice SC 

splice

• Magnet assembly by Summer 2019

• Standalone test in INFN LASA Sept 

2019

• Test in FRESCA2 under discussion
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MAGNET PROJECTS AT CEA

Accelerator magnets for LHC

MQ MQYY

NbTi
FRESCA 2

Nb3Sn

Dipole and Quad for FCC

Technology development

MgB2

LOTUS: radio isotope 

production

Conductor characterization

Other Accelerator Magnets

SARAF Super FRS

Special magnet

WAVE: neutron diffraction=> 

condensed matter physics

HTS => ReBCO

For high field magnets

For accelerator

magnets

EUCARD

EUCARD2

MRI magnet: ISEULT
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SNRB0
1.65

Pohmann et al. 
Magn Reson Med 2016;75:801–809 

Why high magnetic fields for MRI systems?

7T

3T

Improvement of spatial 
and temporal resolution
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IMAGE QUALITY VS. MAGNETIC FIELD

1.5T 7T

Micro-bleeds

Van der Kolk et al. Euro J Radiol 2013; 82: 708-718

1 to 2 mm resolution ≈ 0.3 mm resolution
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WORLD UHF MRI PARK 2001-2017

2007
- 3T :  700 systems

- 7T :  30 systems

- 1 system 8T WB, 3 systems 9.4T WB

- 4 projects at 11.7T WB 

(NeuroSpin, Tokyo, Berkeley, Bethesda)

2015
- 3T :  850 systems

- 7T :  50 systems

- 1 system 8T WB, 4 systems 9.4T WB

- 1 system 10,5T WB in Minneapolis

- 1 funded project at 11.7T WB : NIH 

- 3 potential projects : Tokyo, Gifu, Boston

- 1 project 11,7T potentiel à Seoul

2003
- 3T :  100 systems

- 2 systems 7T WB

- 1 system 8T WB

11.7T, 70cm, 

Passive shielding

2019

11.7T, 90cm, 

Active shielding

2018

10.5T, 82 cm, 

Passive shielding

2015

2019
- 3T : >1000 systems

- 7T :  70 systems

- 1 system 8T WB, 4 systems 9.4T WB

- 1 system 10,5T WB in Minneapolis

- 2 projects at 11.7T WB : NIH, NRI

- 1 project at 14T (design study phase): Heidelberg

- 1 potential project 20T in the US

11.7T, 70cm, 

Passive shielding

2019

15/15
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THE ISEULT 11.7 T MRI PROJECT

Observer

• B0 / Aperture 11.75 T / 900 mm

• Field stability 0.05 ppm/h

• Homogeneity < 0.5 ppm on 22 cm DSV

• 170 wetted double pancakes for the main coil

• 2 shielding coils to reduce the fringe field 

• NbTi conductor @ 1.8 K
Magnet parameters

Stored Energy 338 MJ

Inductance 308 H

Current 1483 A

Length 5.2 m

Diameter 5 m

Weight 132 t

Neurospin Center

CEA Saclay, France
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THE ISEULT 11.7 T MRI MAGNET PROJECT

(gray)
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Power supplies

Control room

A DEDICATED COMPLEX INSTALLATION 

TO OPERATE THE MAGNET 

48 V Batteries

Vacuum circuit

MCS/MSS/DAQ

Dump resistor

Cryo-lines
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• Main coil made of 170 DPs

• NbTi conductors @ 1.8 K

• Quench protection based on an external resistance

• Operation in semi-persistent mode (power supply + FCL) 

Lots of innovations compared
with classical MRI magnets!

THE ISEULT MAGNET



40

Belfort

Corbeil

Essonnes
Saclay

2 WEEKS OF TRANSPORT FROM BELFORT TO SACLAY
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MAGNET COMMISSIONING

• Cooldown in progress (4K at the moment)

• Nominal field expected in october 2019
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• Magnets are everywhere, specially SC magnets

• Very important developments in superconductivity technologies over the last 
40 years, thanks to particle physics and MRI business

• Technical challenges to build bigger and stronger magnets:

• use of Nb3Sn is the most mature option for future accelerators (i.e. 
FCC); use of HTS still need high tech R&D (from material science to 
electromagnetic/electromechanical engineering) 

• increase the operating temperature and simplify the cryogenics

• reinforce conductor mechanical strength and protect the coils 
against quenches.

• HTS/Nb3Sn developments will strongly depends on the strategy 
chosen for future particles accelerators

CONCLUSIONS
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Thank you for your attention

And thanks to M. Durante, P. Fazilleau, Hélène Felice, C. Lorin, T. Lecrevisse, 
D. Simon, E. Rochepault, Pierre Védrine


