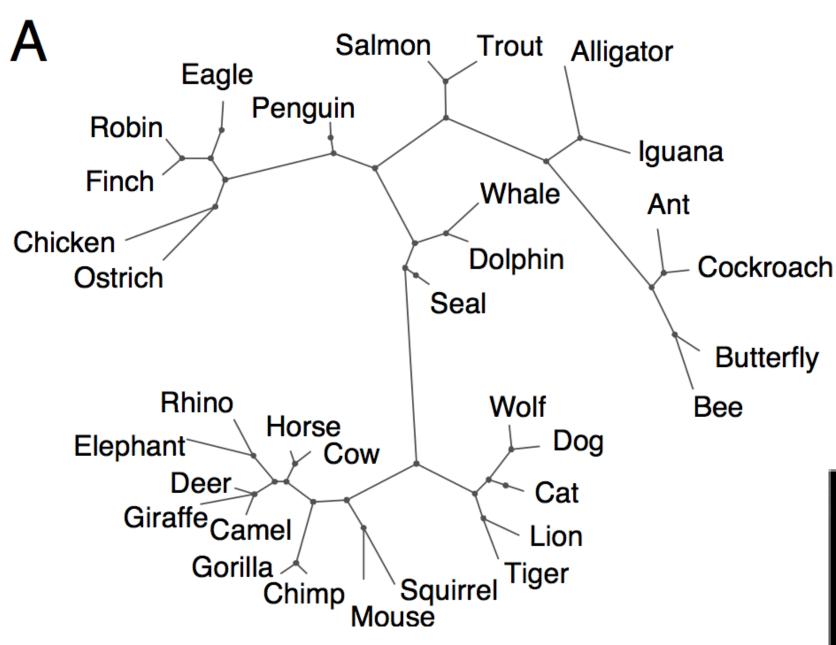
Relational Inductive Bias, Deep Learning, and Graph Networks

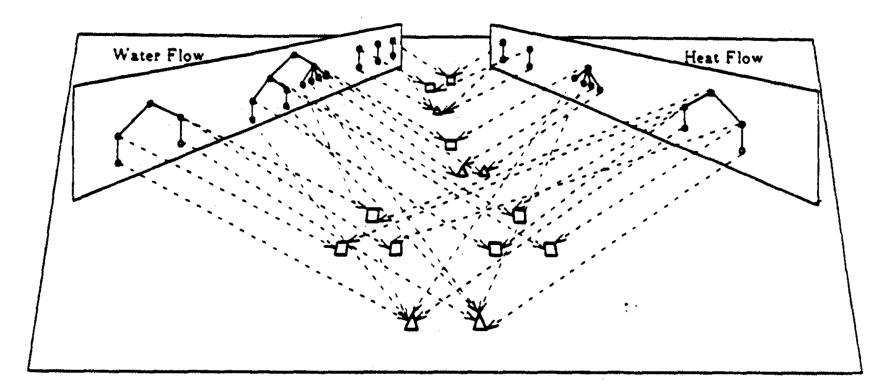
Jessica B. Hamrick

LAL Seminar April 09, 2019

Human Thought is Highly Structured

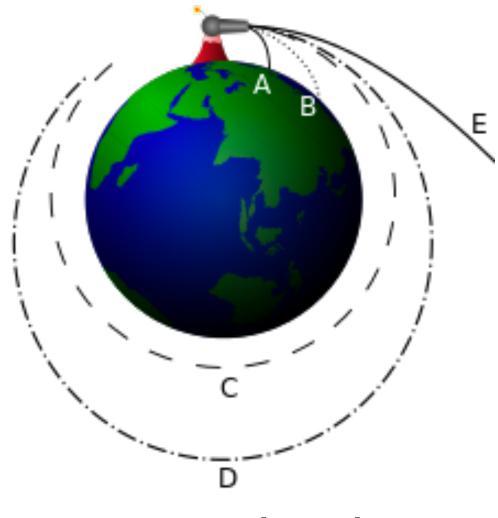


Kemp & Tenenbaum (2008)



Falkenhainer, Forbus & Gentner (1989)

Battaglia, Hamrick & Tenenbaum (2013)



Newton (1687)

How do we build Al that can...

- Understand hierarchical relationships, like family structure or evolutionary history?
- Understand how objects in the world interact with each other under different physical dynamics?
- Make analogies between disparate phenomena, despite a lack of surface similarity?
- Perform novel thought experiments—or even real experiments!—to gain insight about the world?

All of these are forms of reasoning that (in humans) require understanding the world in terms of *entities*, the *relations* between them, and the *rules* for composing them.

Structure: the product of composing a known set of *entities* and *relations* according to a particular set of *rules*.

What should structure look like in modern Al systems?

Outline

- 1. Structure and inductive bias in deep learning
- 2. Graph networks for deep learning on graphs
- 3. Graph networks for physical inference
- 4. Graph networks for physical construction

Outline

- 1. Structure and inductive bias in deep learning
- 2. Graph networks for deep learning on graphs
- 3. Graph networks for physical inference
- 4. Graph networks for physical construction

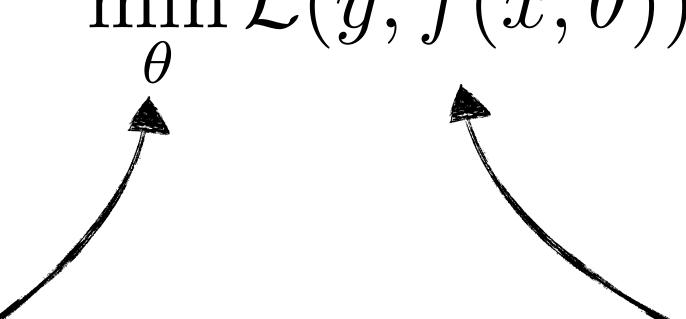
Deep Learning

Supervised Learning

Reinforcement Learning

$$y = f(x; \theta)$$

$$\min_{\theta} \mathcal{L}(y, f(x; \theta))$$

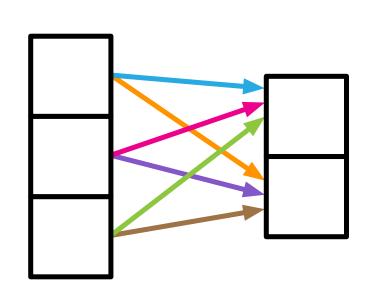


Gradient-based optimization ("backpropagation") Usually stochastic gradient descent

"Layers" of differentiable, nonlinear functions

The Multi-Layer Perceptron (MLP)

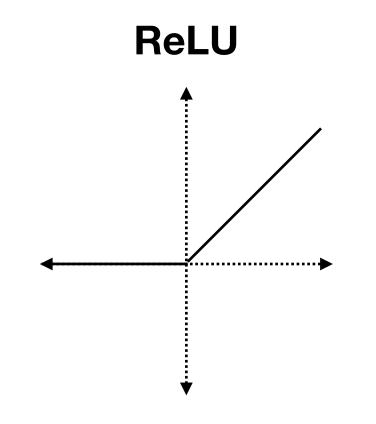
Rosenblatt (1961)

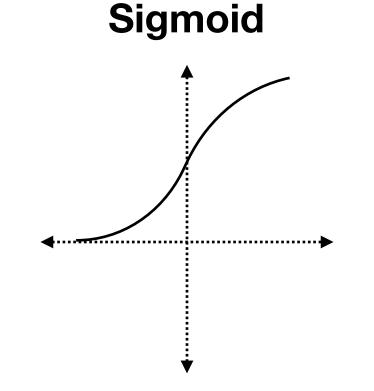


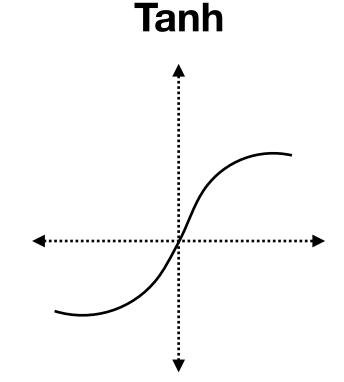
$$Linear(x) := Wx + b$$

$$FC(x) := ReLU(Linear(x))$$

$$MLP(x) := Linear(FC(\cdots FC(x)))$$

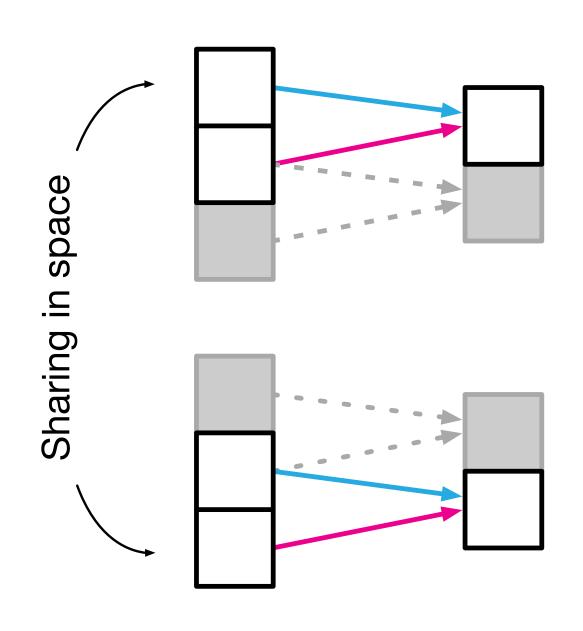






The Convolutional Network (CNN)

Fukushima (1980), LeCun et al. (1989)



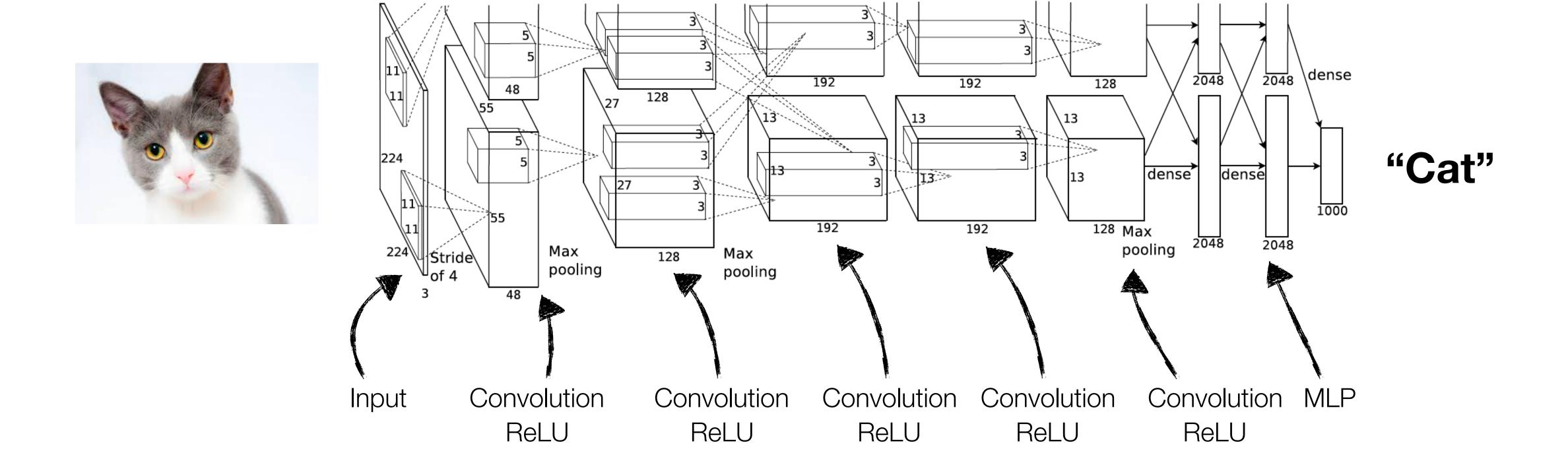
$$Conv(x) := ReLU(x * W)$$

Usually multiple convolutions with different weights are applied to the same input

Often followed by an additional nonlinearity to reduce the size, such as "max pooling"

AlexNet

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012)



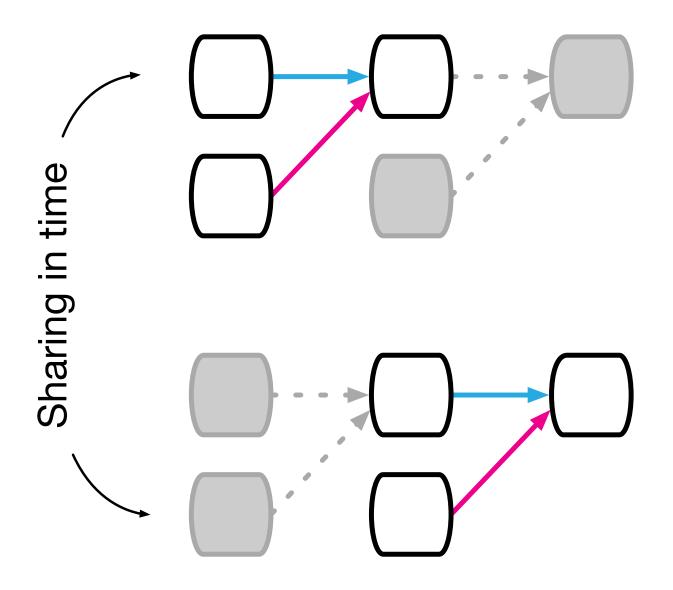
Max Pooling

Max Pooling

Max Pooling

The Recurrent Network (RNN)

Elman (1990)

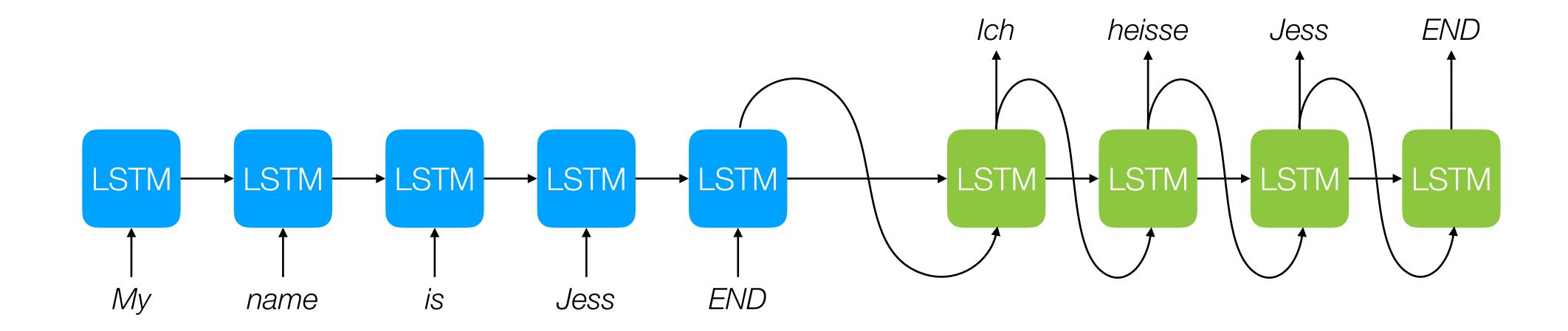


$$[y, h_{t+1}] = \text{RNN}(x, h_t) := \text{MLP}([x, h_t])$$

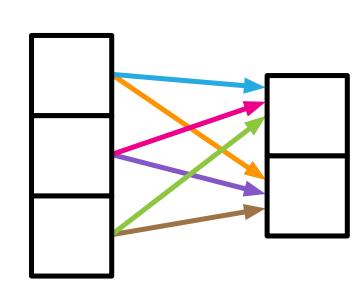
In practice, modern RNNs like LSTMs (Hochreiter & Schmidhuber, 1997) or GRUs (Cho et al. 2014) use a more complicated base function than an MLP

Sequence2Sequence

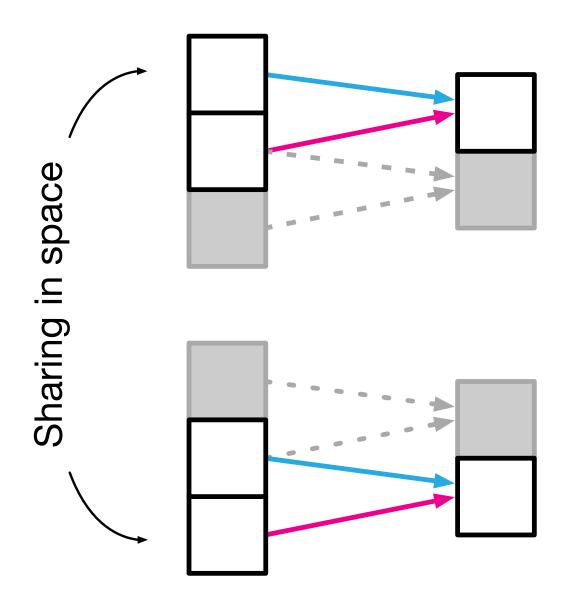
Sutskever, I., Vinyals, O., & Le, Q. V. (2014)



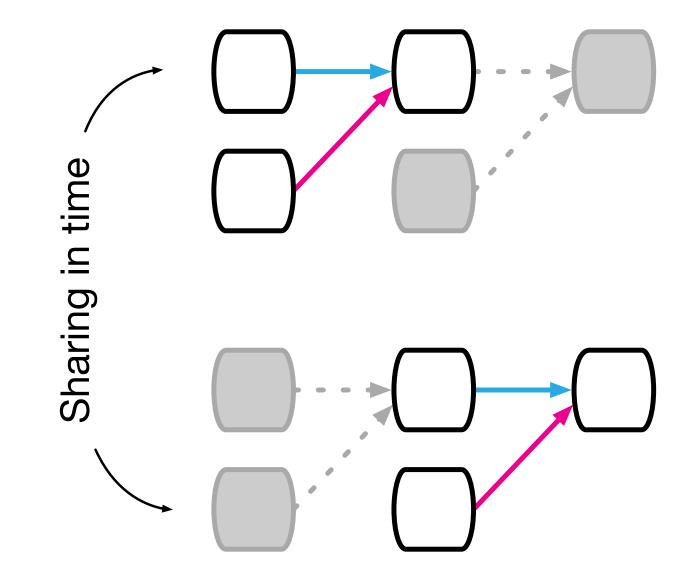
The Story So Far



Fully-Connected Layer
Fixed size tensors



Convolutional Layer Variable size tensors



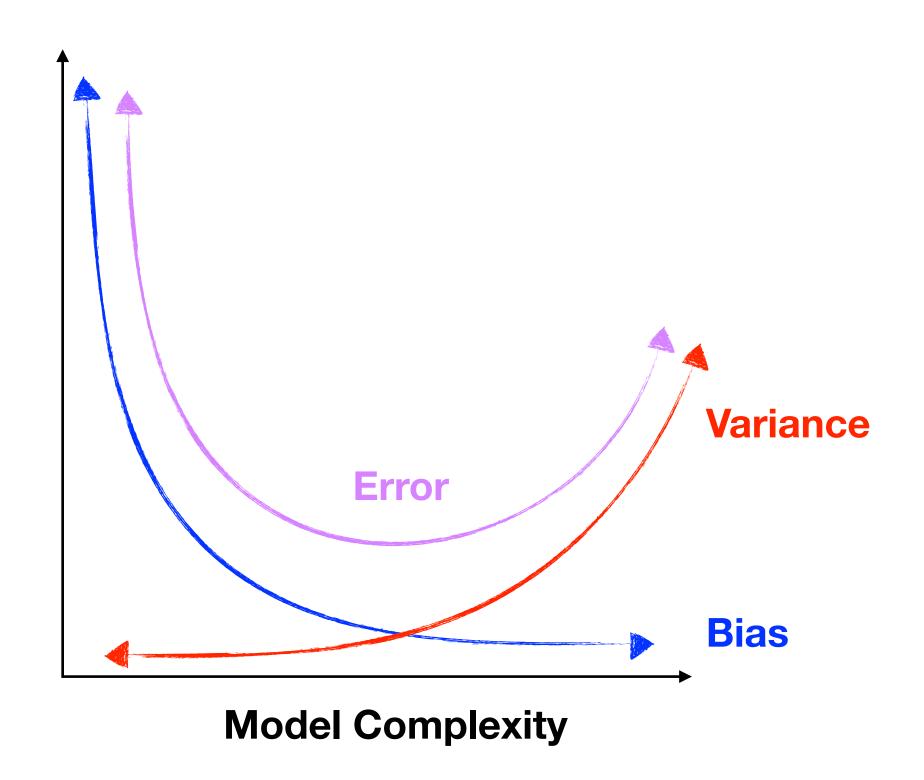
Recurrent Layer

Variable-size ordered

sequence of tensors

Inductive Bias

Inductive Bias: the part of a learning algorithm which allows it to prioritize one solution (or interpretation) over another, independent of the observed data (Mitchell, 1980)



CNNs prefer solutions which are spatially invariant.

RNNs prefer solutions in which order matters.

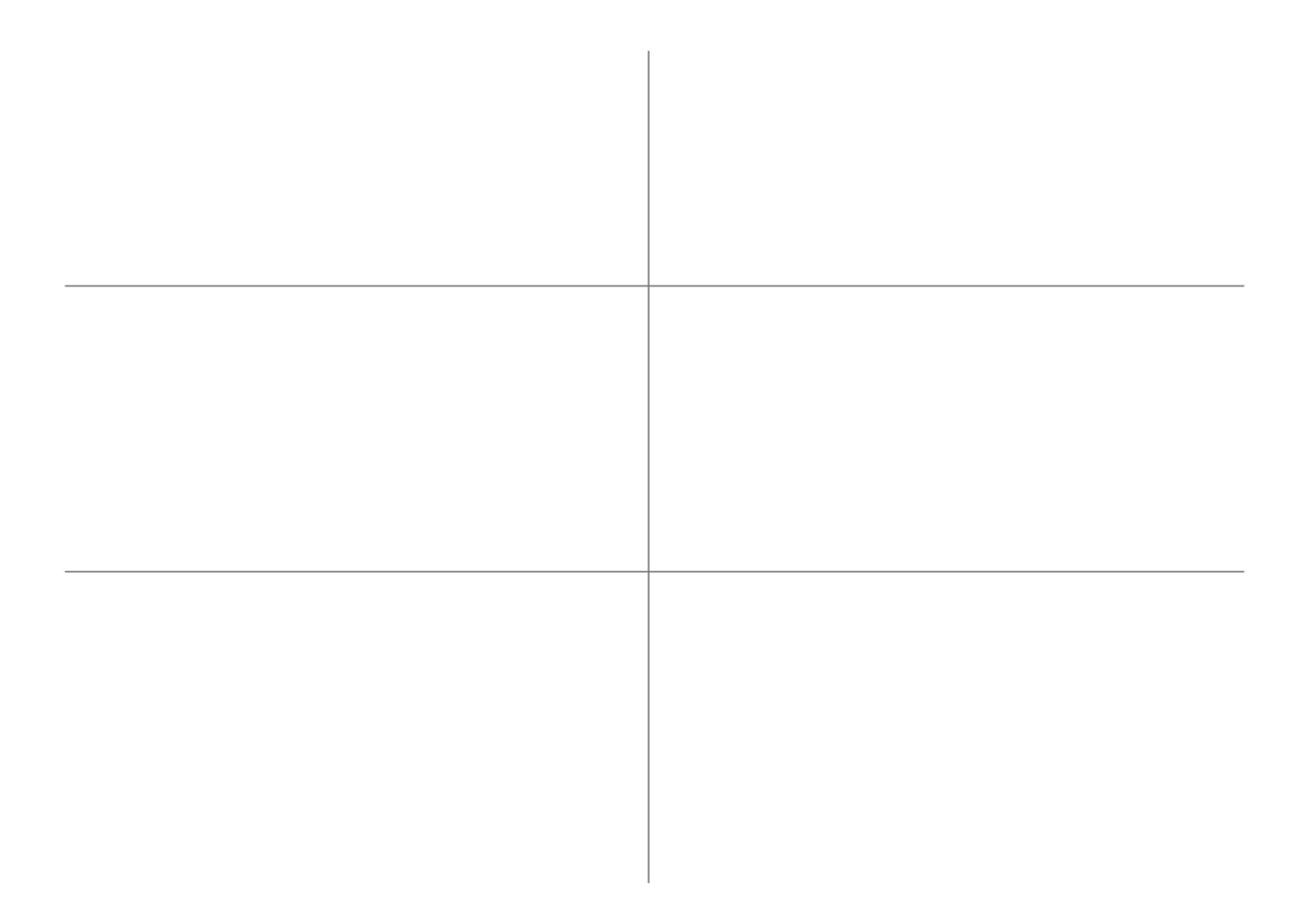
What other forms of (architectural) inductive bias might we be able to use?

Relational inductive bias: prioritizes solutions in which there are *rules* for combining *entities* and *relations*.

Outline

- 1. Structure and inductive bias in deep learning
- 2. Graph networks for deep learning on graphs
- 3. Graph networks for physical inference
- 4. Graph networks for physical construction

Beyond Tensor Data



History of Graph Neural Networks

Scarselli et al. (2009) "The Graph Neural Network Model".

Summarizes the initial papers on the topic from ~2005-2009. Very general formalism.

Li et al. (2015) "Gated graph sequence neural networks".

Used RNNs for sharing update steps across time.

Bronstein et al. (2016) "Geometric deep learning: going beyond Euclidean data". Survey of spectral and spatial approaches for deep learning on graphs.

Gilmer et al. (2017) "Neural Message Passing for Quantum Chemistry".

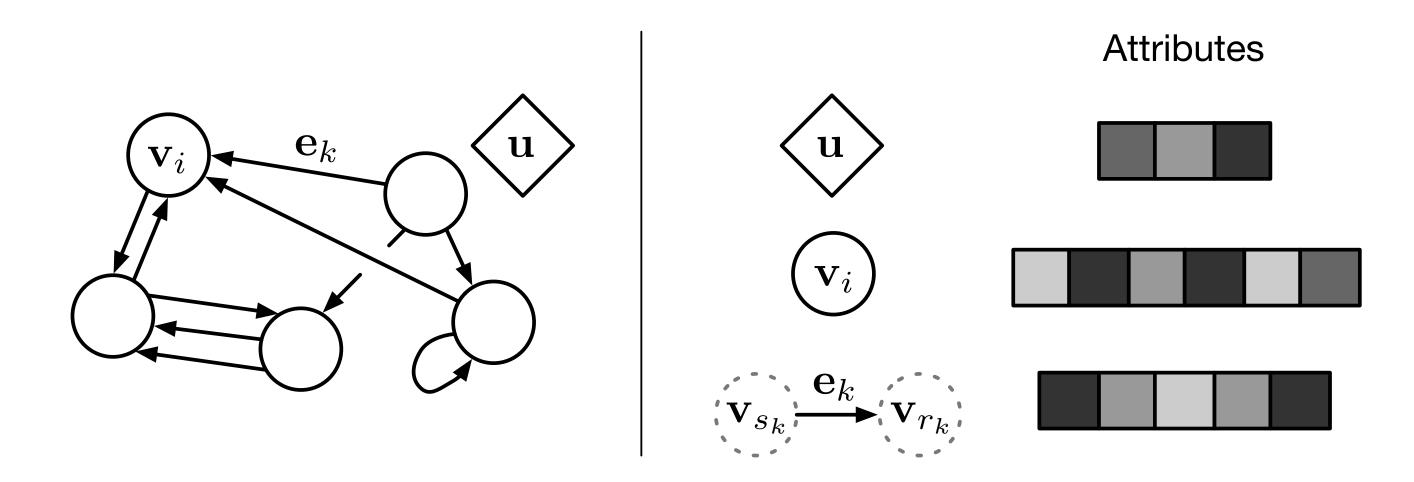
Introduced "message-passing neural network" (MPNNs) formalism, unifying various approaches such as graph convolutional networks.

Battaglia et al. (2018). "Relational inductive biases, deep learning, and graph networks". Introduced "graph network" formalism, extends MPNNs, unifies non-local neural networks/self-attention/Transformer.

Graph Networks

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

- 1. Takes graphs as input, return graphs as output
- 2. Invariant to the permutation of the nodes and edges
 - 3. Scales to different numbers of nodes and edges



Graph Networks

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

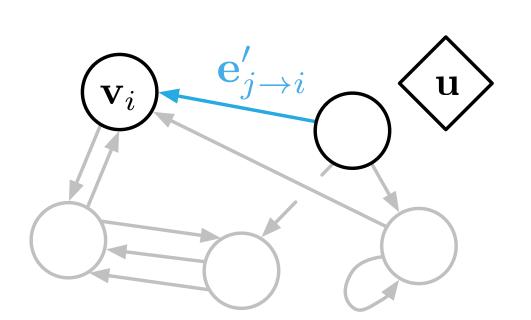
Edges

Nodes

Globals

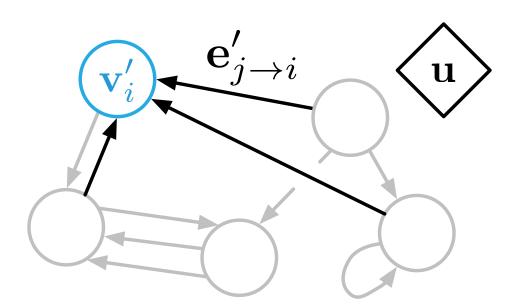
u

Edge update



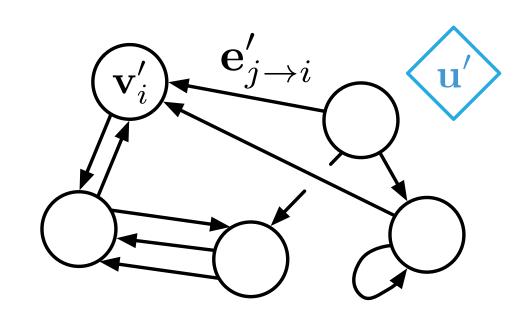
$$\mathbf{e}'_{i \to j} = \phi_e(\mathbf{v}_i, \mathbf{v}_j, \mathbf{e}_{i \to j}, \mathbf{u})$$

Node update



$$\mathbf{v}_i' = \phi_v(\mathbf{v}_i, \sum_j \mathbf{e}_{j \to i}', \mathbf{u})$$

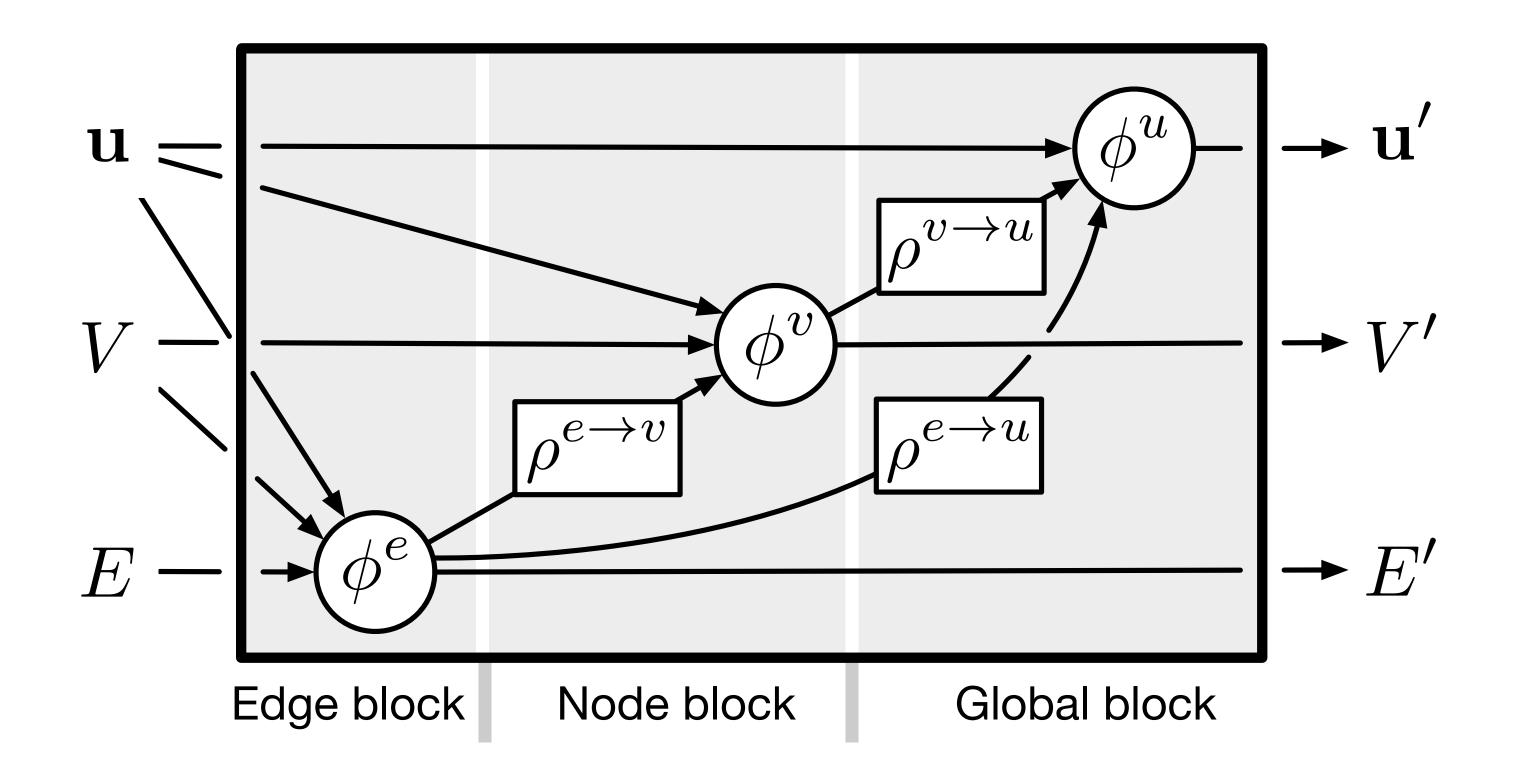
Globals update



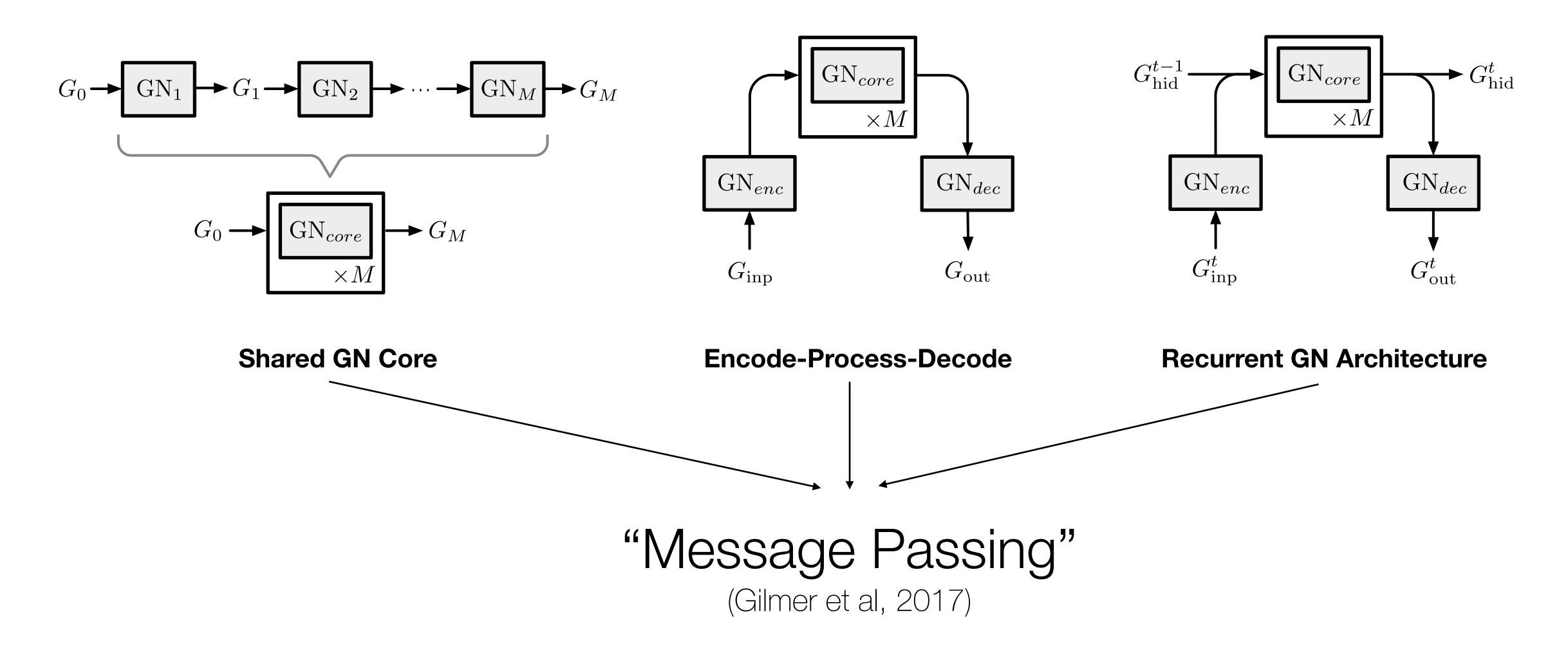
$$\mathbf{e}'_{i\to j} = \phi_e(\mathbf{v}_i, \mathbf{v}_j, \mathbf{e}_{i\to j}, \mathbf{u}) \qquad \mathbf{v}'_i = \phi_v(\mathbf{v}_i, \sum_j \mathbf{e}'_{j\to i}, \mathbf{u}) \qquad \mathbf{u}' = \phi_u(\sum_i \mathbf{v}'_i, \sum_{i,j} \mathbf{e}'_{i\to j}, \mathbf{u})$$

Graph Networks

Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)

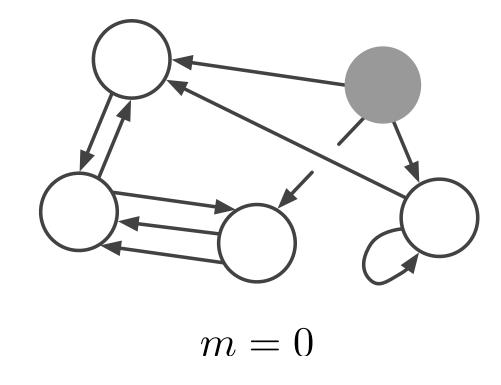


Composing Graph Networks



Message Passing

Gilmer et al. (2017)



What are graph networks good for?

- Visual scene understanding
- Few-shot learning
- Predicting physical dynamics
- Predicting multi-agent systems
- Reasoning in knowledge graphs
- Predicting chemical properties of molecules
- Predicting road traffic
- Image segmentation
- 3D mesh classification
- Image region classification
- Semi-supervised text classification

- Machine translation
- Continuous control
- Object-oriented RL
- Symbolic planning
- Combinatorial optimization
- Boolean SAT problems
- Modeling cellular automata
- Inference in graphical models
- ... and more!

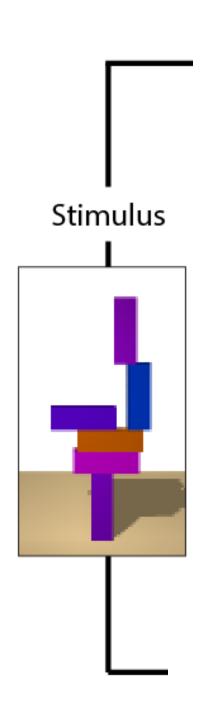
Outline

- 1. Structure and inductive bias in deep learning
- 2. Graph networks for deep learning on graphs
- 3. Graph networks for physical inference
- 4. Graph networks for physical construction

Humans are a "Construction Species"

The Gluing Task

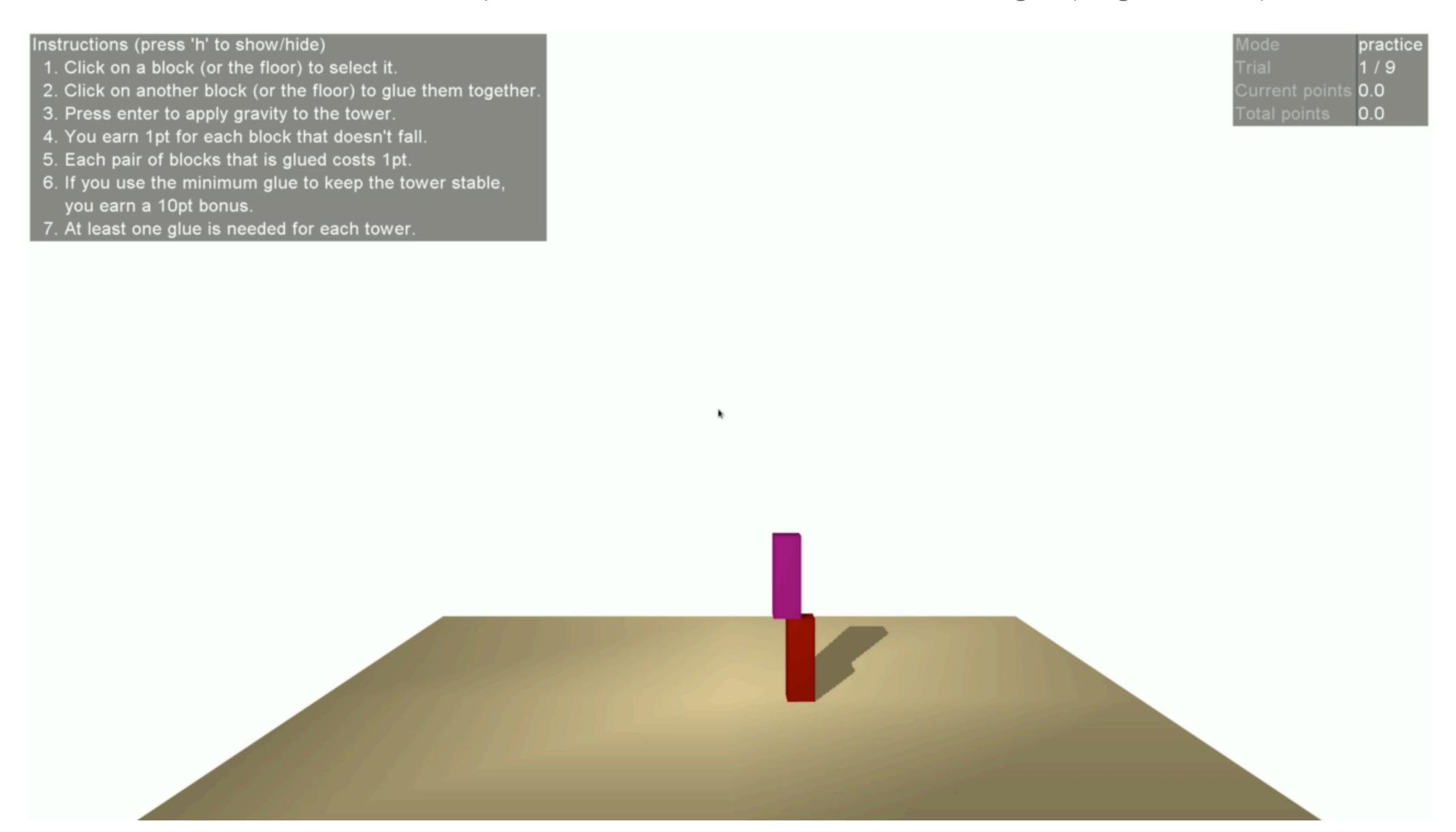
Hamrick*, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)



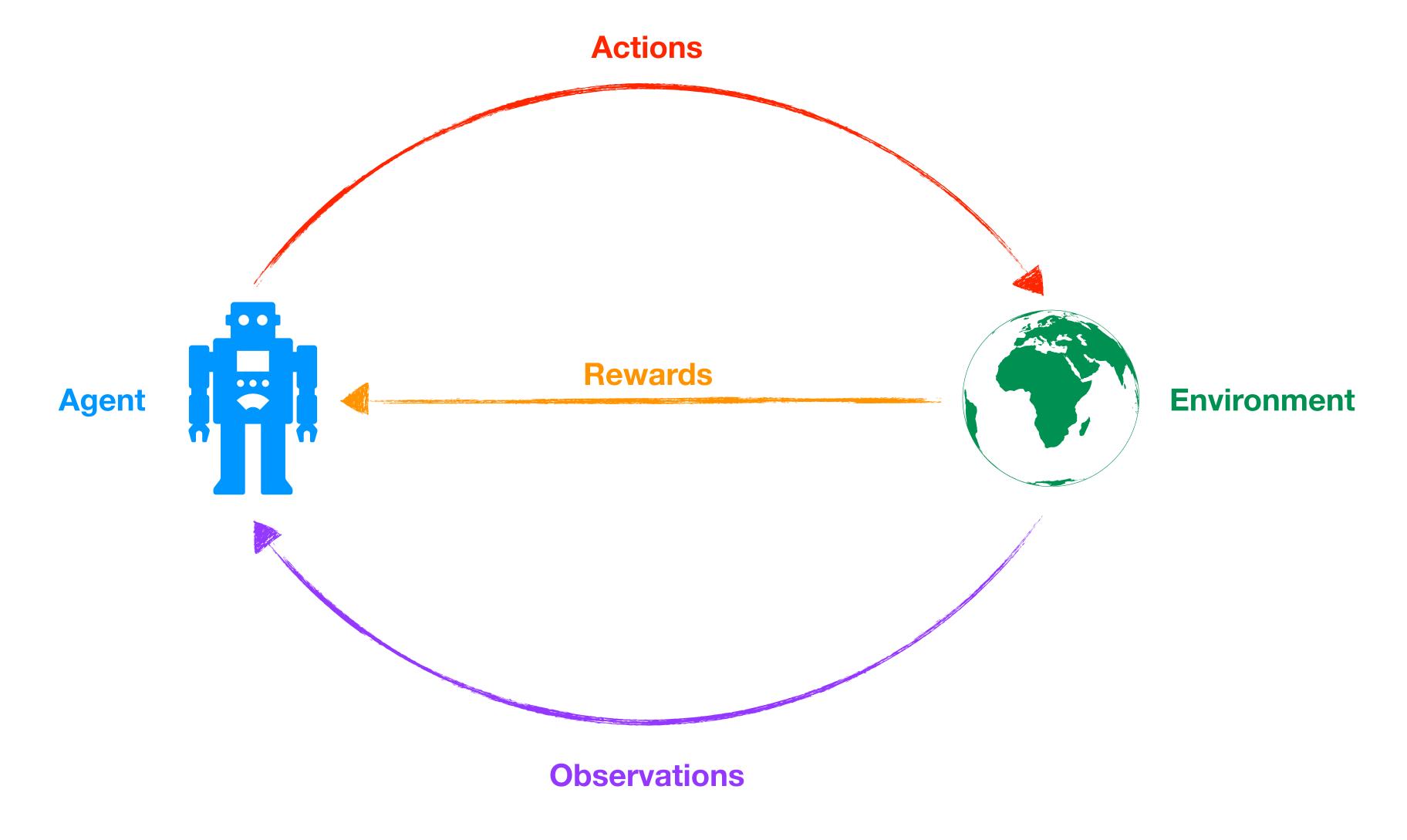
Joint work with Kelsey Allen (MIT)

Goal: glue blocks together to make the tower stable, using the minimum amount of glue.

Hamrick*, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)



Reinforcement Learning



Reinforcement Learning

Learn a "policy" which maximizes the sum of discounted expected future rewards

The Bellman Equation:

$$Q(s, a) = r + \gamma \cdot \max_{a'} Q(s', a')$$

Q-Learning:

$$\mathcal{L} := Q(s, a; \theta) - (r + \gamma \cdot \max_{a'} Q(s', a'; \theta))$$

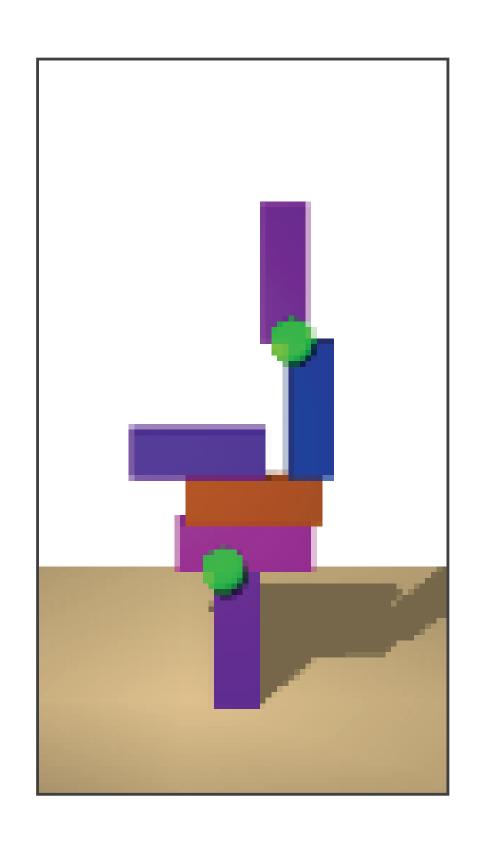
Policy:

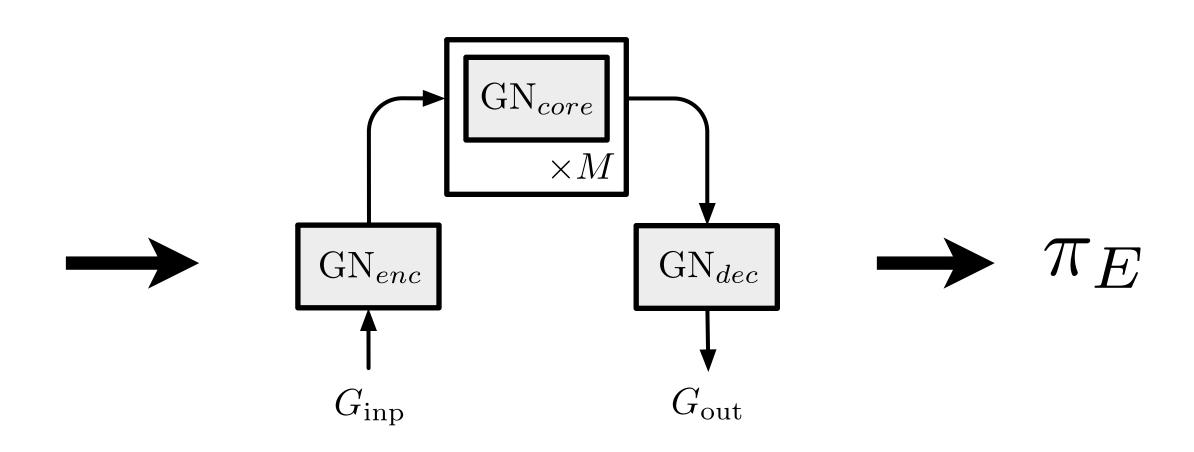
$$\pi(s) := \underset{a}{\operatorname{arg\,max}} Q(s, a; \theta)$$

Deep Q-Learning
(DQN) approximates Q
with a neural network
that takes a single
state as input and
returns Q-values for all
possible actions.

Learning a Policy Over the Edges of a Graph

Hamrick*, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)





Agent Variations

Hamrick*, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)

(Trained & tested on towers of size 2-10 blocks)

Human: human baseline

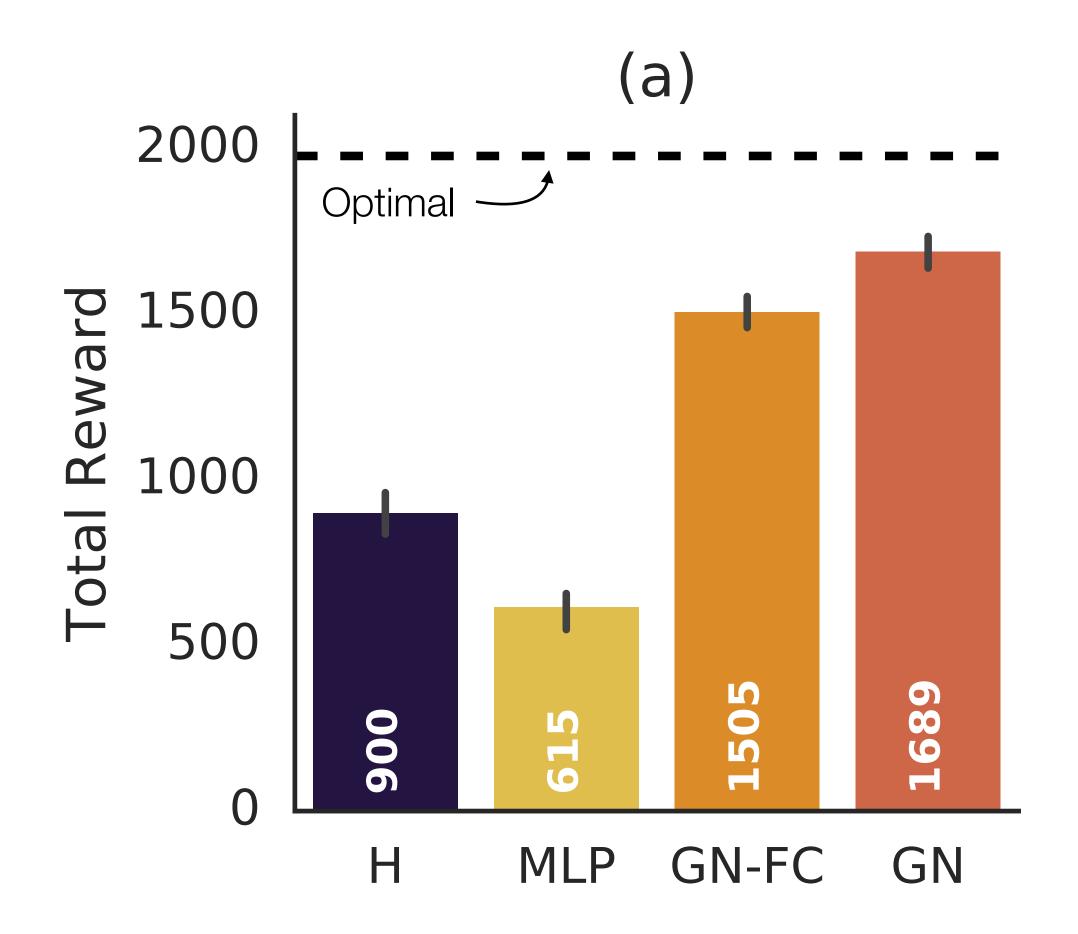
MLP: multilayer perceptron agent

GN-FC: fully connected graph network agent (nodes=blocks, edges=all-to-all)

GN: sparse graph network agent (nodes=blocks, edges=contacts)

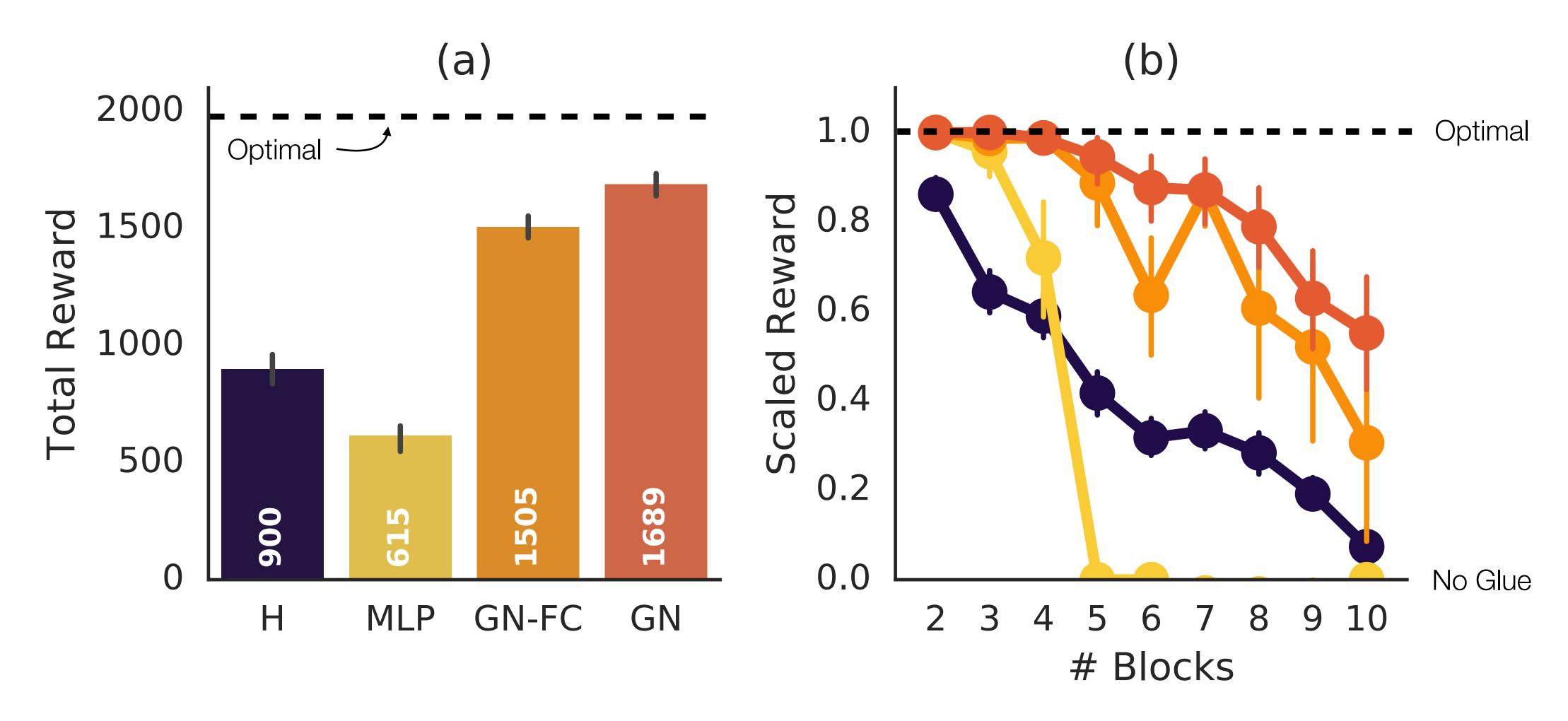
Results

Hamrick*, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)

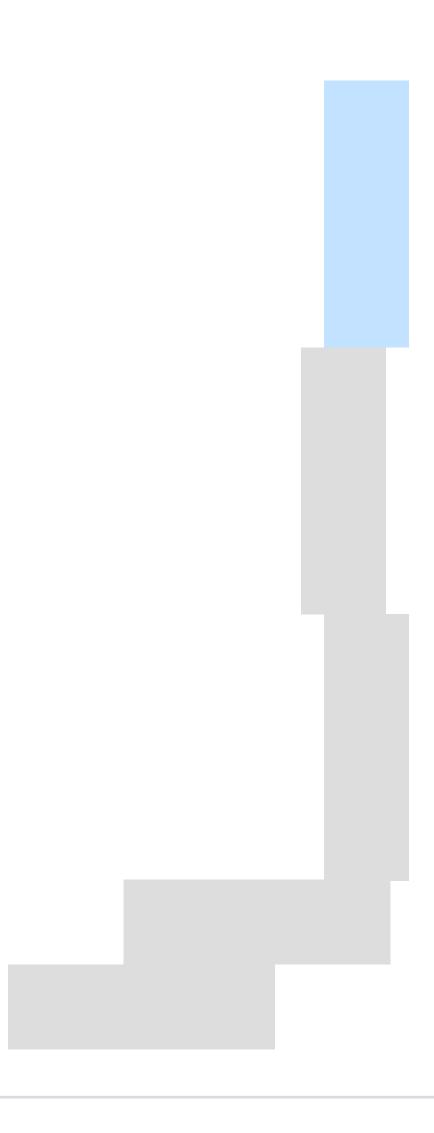


Results

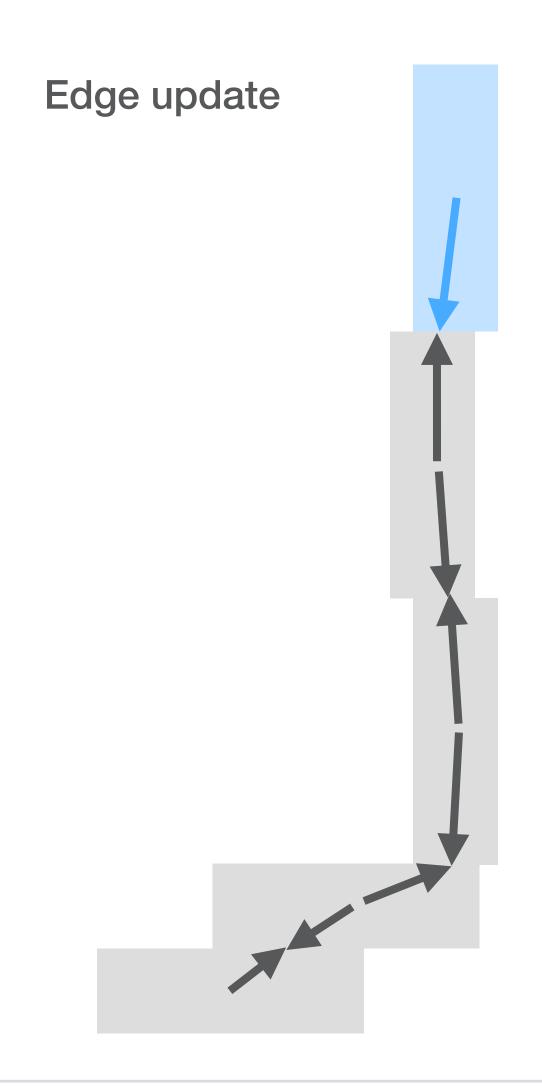
Hamrick*, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)



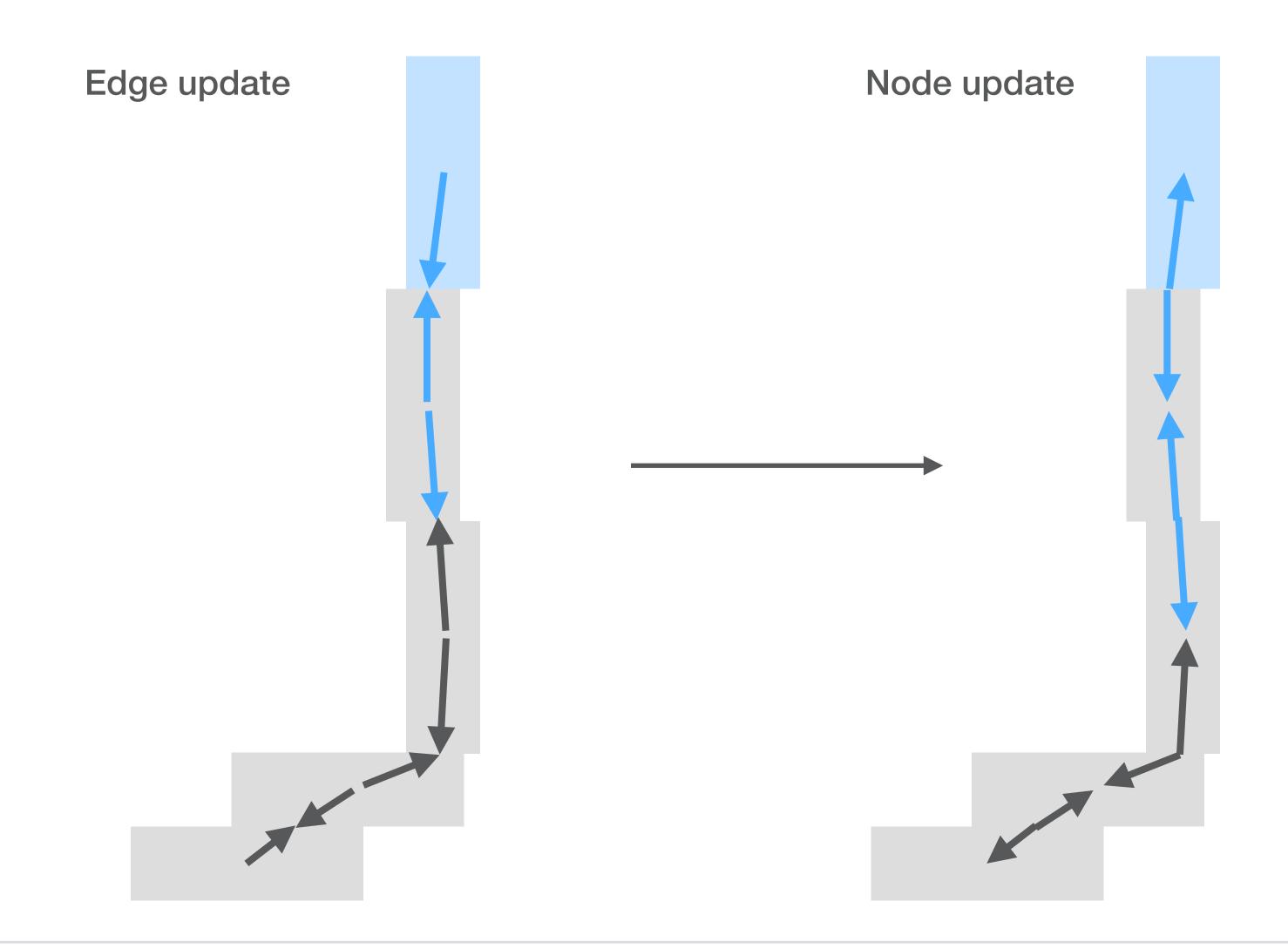
Force Propagation

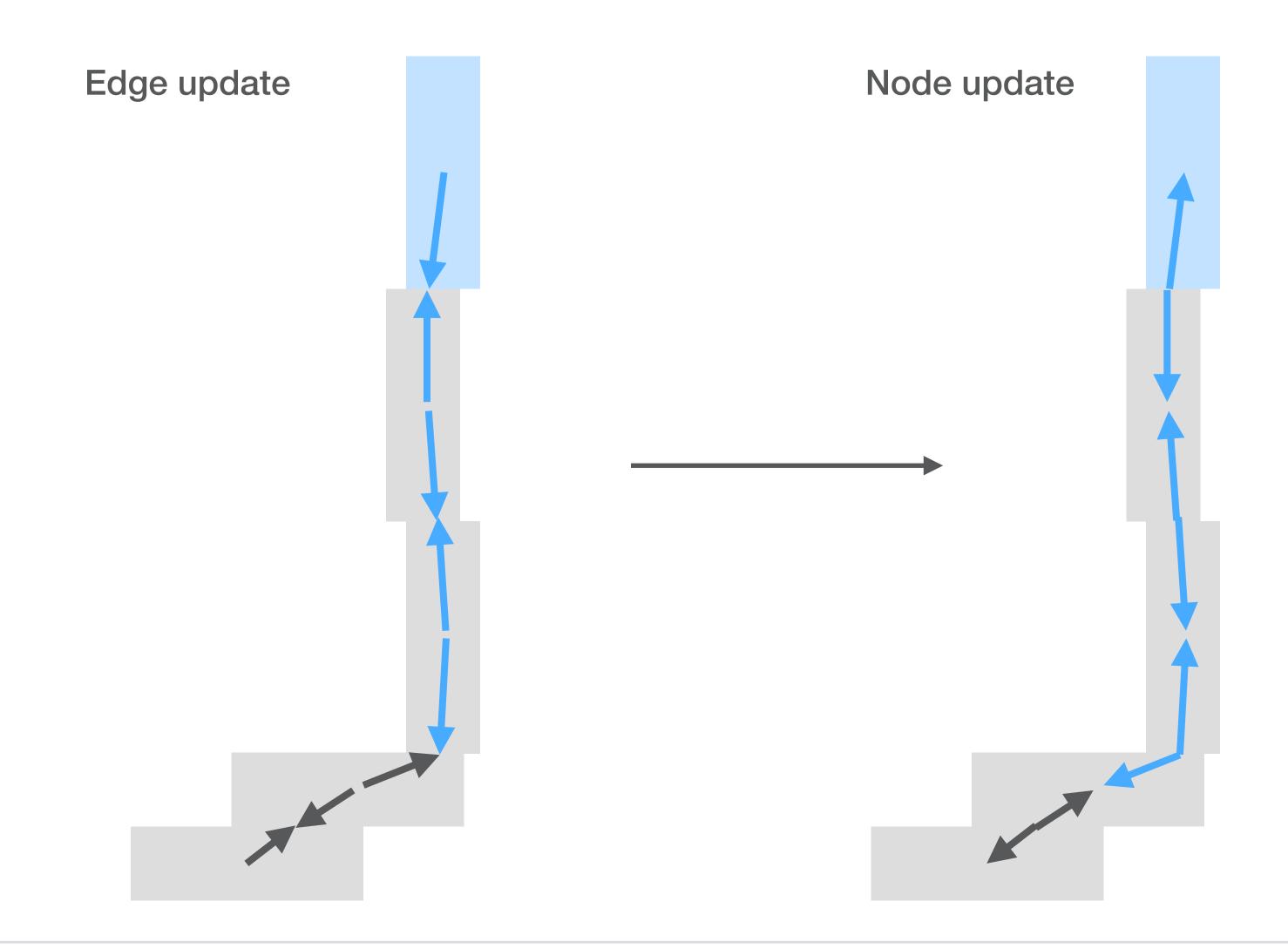


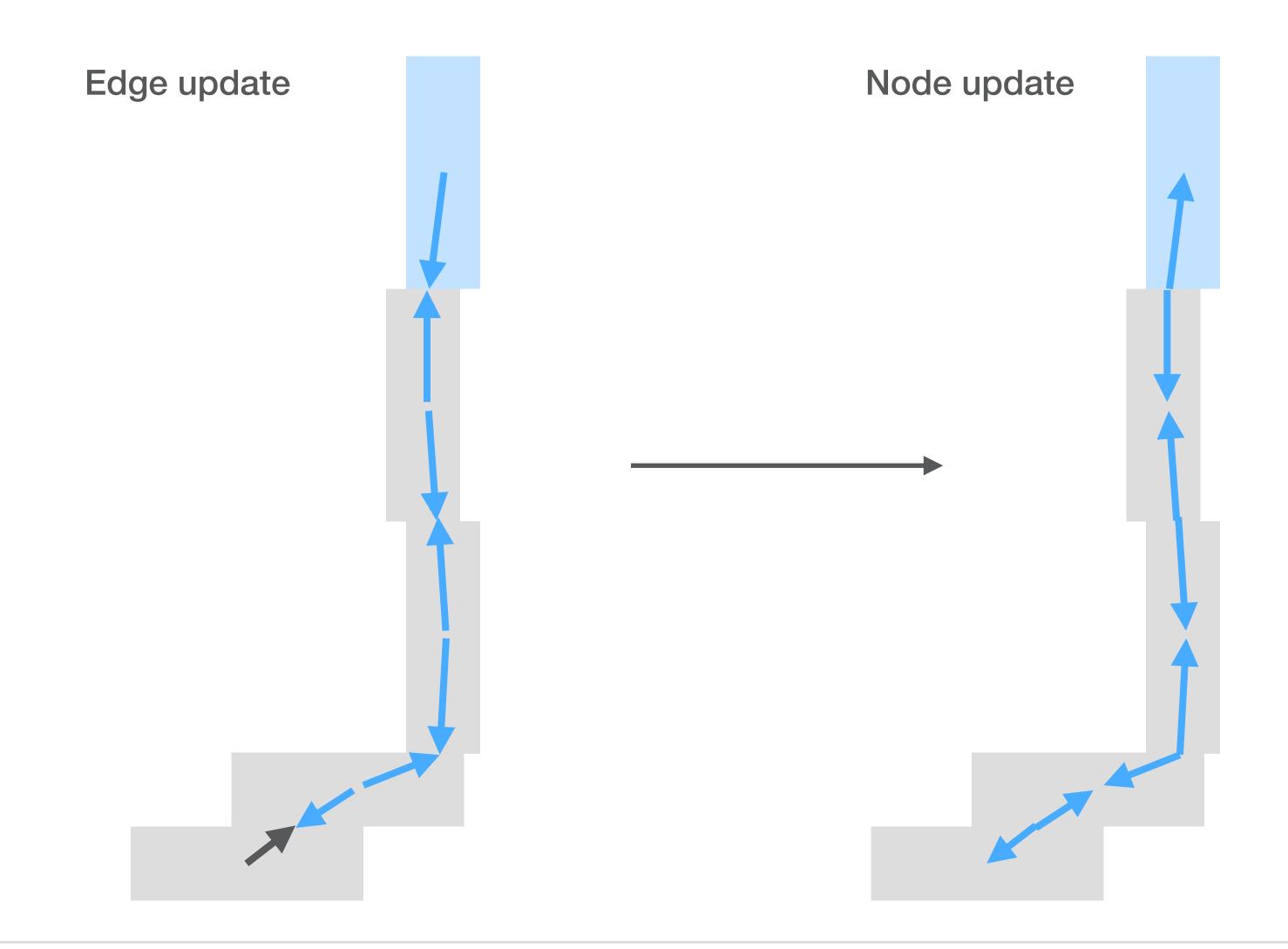
Force Propagation











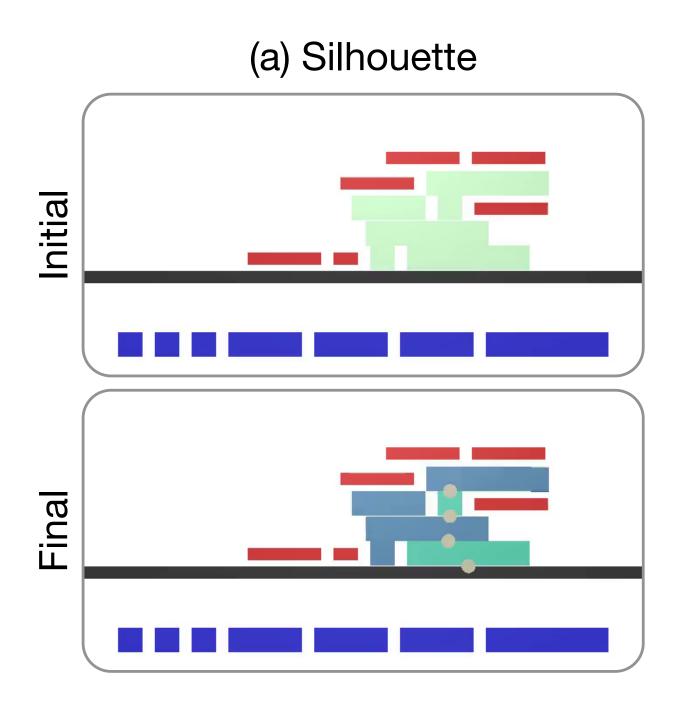
Outline

- 1. Structure and inductive bias in deep learning
- 2. Graph networks for deep learning on graphs
- 3. Graph networks for physical inference
- 4. Graph networks for physical construction

Humans are a "Construction Species"

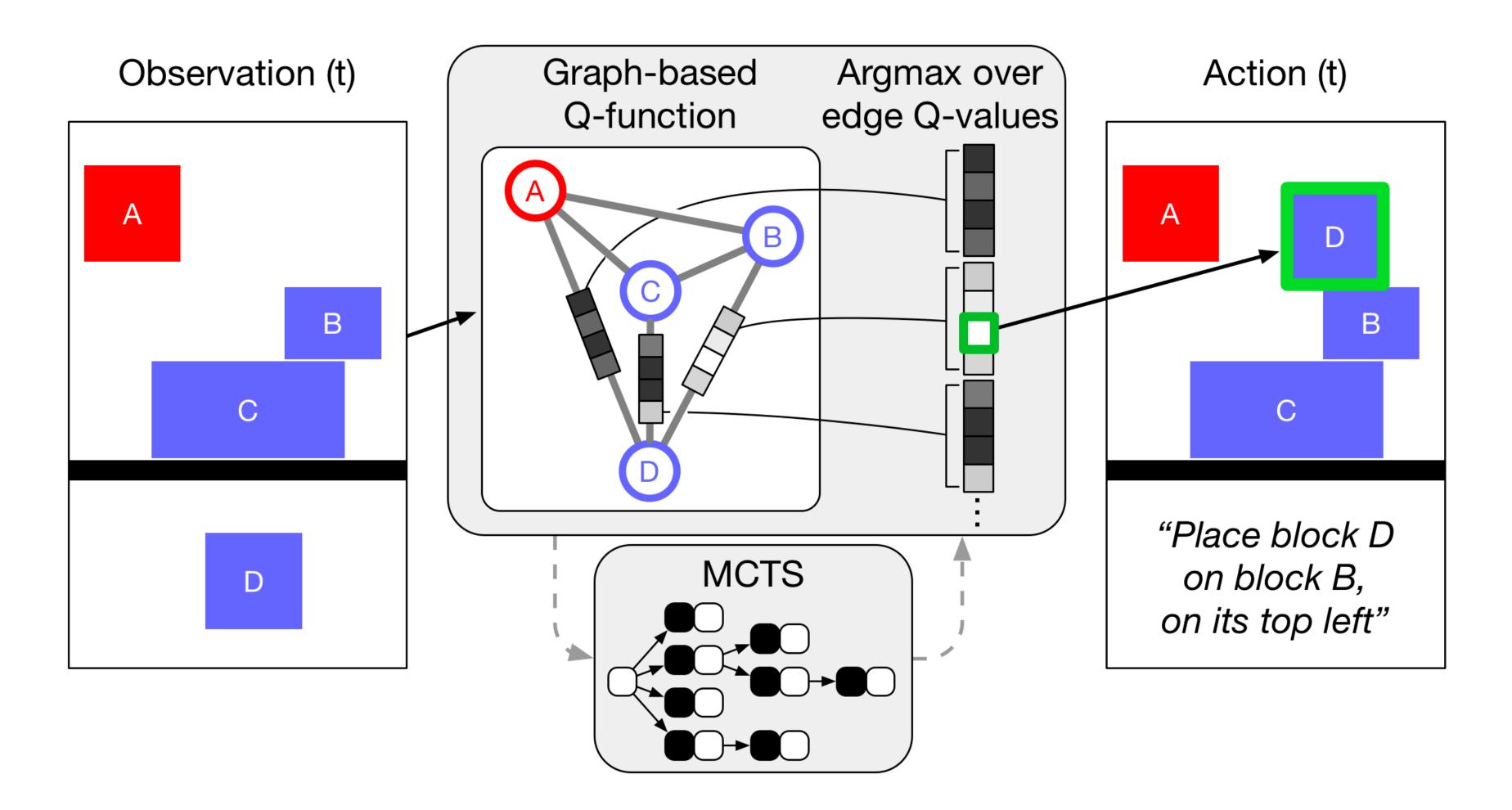
Construction Tasks

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)



Graph Network Agent (GN-DQN)

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)



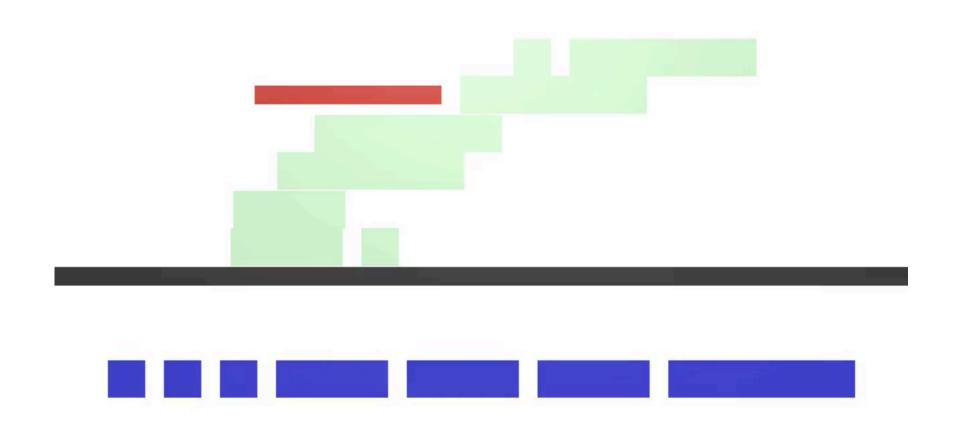
Silhouette

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

Silhouette Relative GN—DQN

Episode: 0 Total Reward: 0.0

Step: 0 Reward: 0.0



Silhouette

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

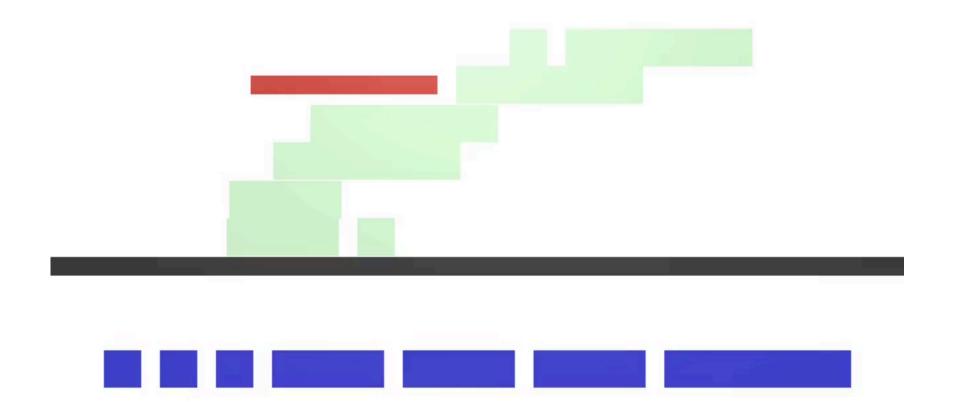
Silhouette
Relative GN—DQN

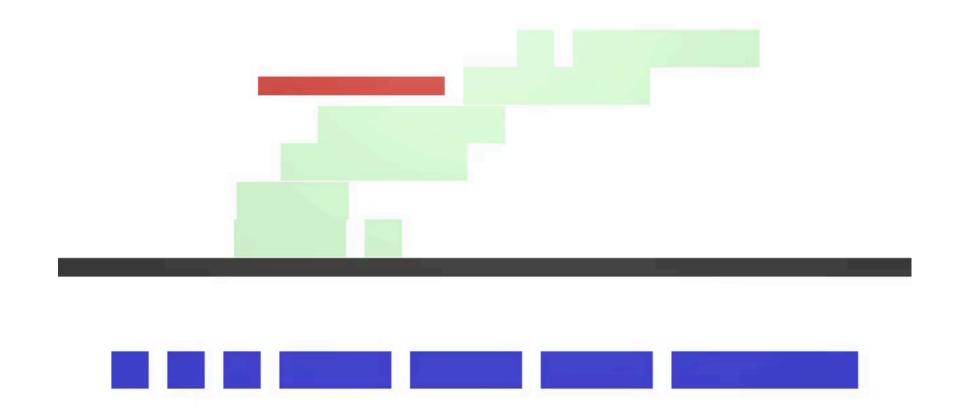
Episode: 0 Total Reward: 0.0

Step: 0 Reward: 0.0

Silhouette
Relative RNN—RSO

Episode: 0 Total Reward: 0.0 Step: 0 Reward: 0.0





Connecting

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

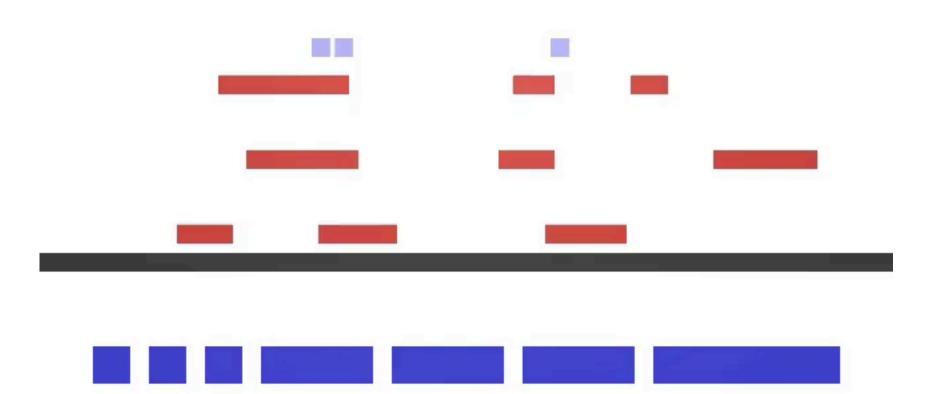
Connecting Relative GN-DQN

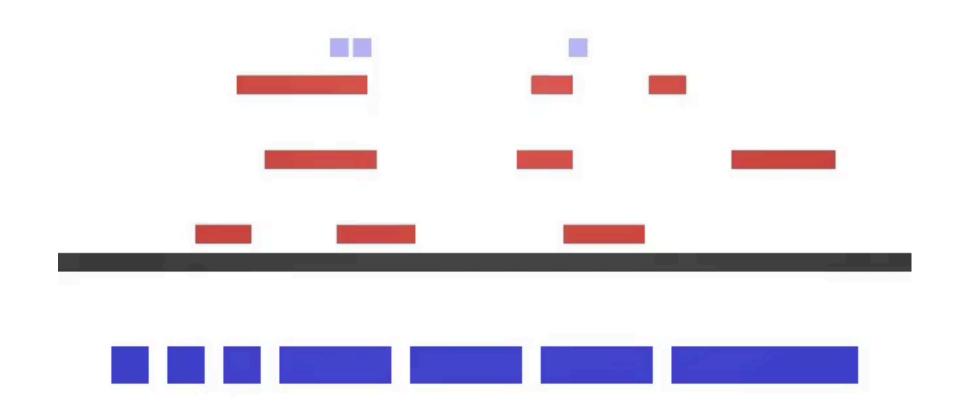
Episode: 0 Total Reward: 0.0 Step: 0

Reward: 0.0

Connecting Relative RNN-RS0

Episode: 0 Total Reward: 0.0 Reward: 0.0 Step: 0





Covering

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

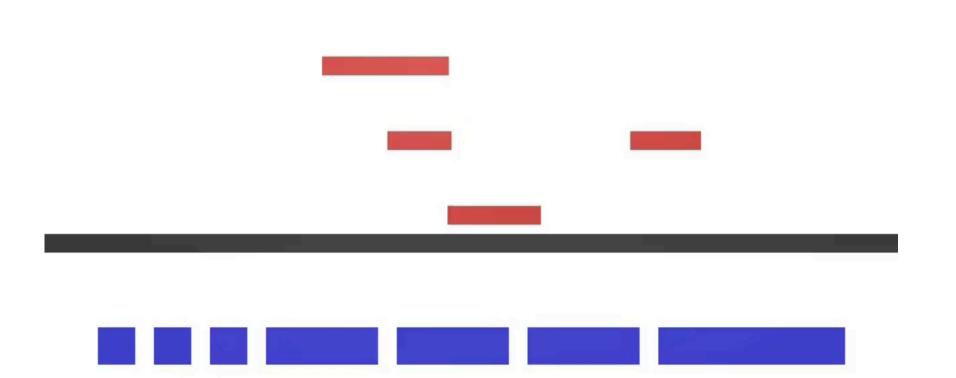
Covering
Relative GN—DQN

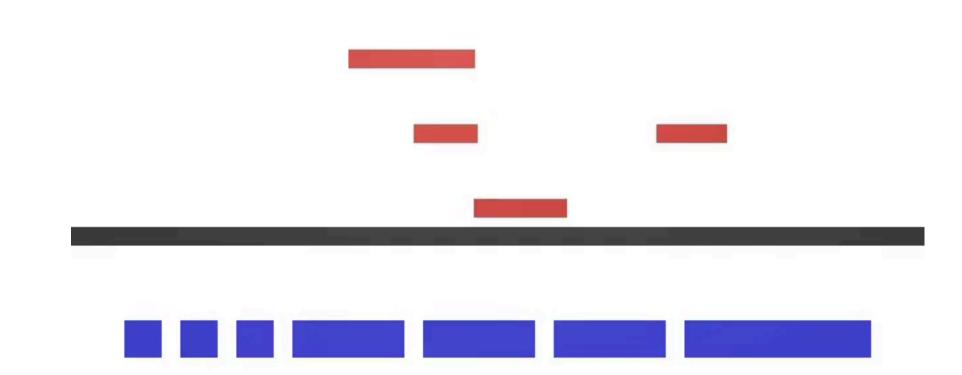
Episode: 0 Total Reward: 0.0

Step: 0 Reward: 0.0

Covering
Relative CNN—RS0

Episode: 0 Total Reward: 0.0 Step: 0 Reward: 0.0





Covering Hard

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

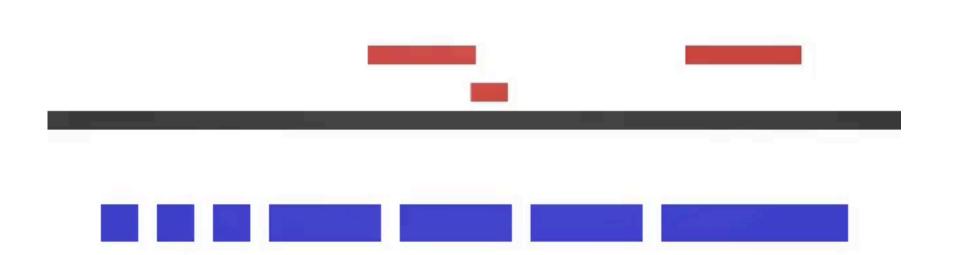
Covering Hard Relative GN—DQN

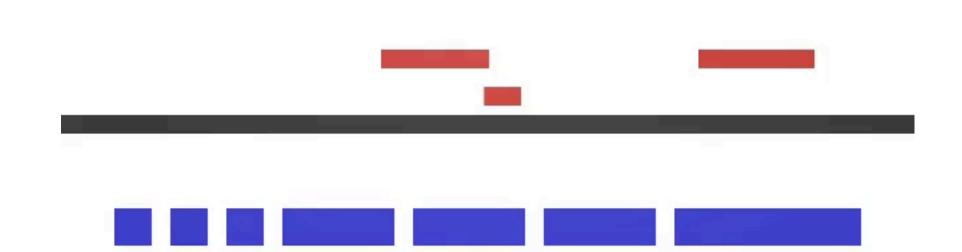
Episode: 0 Total Reward: 0.0

Step: 0 Reward: 0.0

Covering Hard Relative RNN—RSO

Episode: 0 Total Reward: 0.0 Step: 0 Reward: 0.0





Outline

- 1. Structure and inductive bias in deep learning
- 2. Graph networks for deep learning on graphs
- 3. Graph networks for physical inference
- 4. Graph networks for physical construction

Structure: the product of composing a known set of **entities** and **relations** according to a particular set of **rules**.

What should structure look like in modern Al systems?

Graph Networks!

Graph Networks in TensorFlow

https://github.com/deepmind/graph_nets

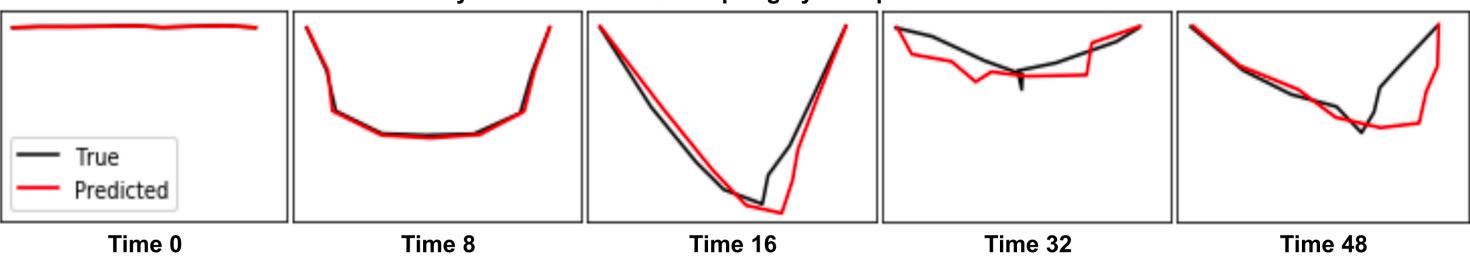
```
import graph_nets as gn
import sonnet as snt

# Provide your own functions to generate graph-structured data.
input_graphs = get_graphs()

# Create the graph network.
graph_net_module = gn.modules.GraphNetwork(
    edge_model_fn=lambda: snt.nets.MLP([32, 32]),
    node_model_fn=lambda: snt.nets.MLP([32, 32]),
    global_model_fn=lambda: snt.nets.MLP([32, 32]))

# Pass the input graphs to the graph network, and return the output graphs.
output_graphs = graph_net_module(input_graphs)
```

Physics: rollout of mass-spring system pinned at ends



Thanks!

Peter Battaglia

Victor Bapst

Alvaro Sanchez-Gonzalez

Kelsey Allen

Tina Zhu

Kevin McKee

Josh Tenenbaum

Andy Ballard

Razvan Pascanu

Oriol Vinyals

Nicolas Heess

Yujia Li

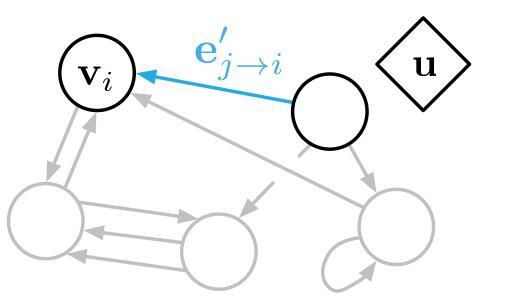
Carl Doersch

Kim Stachenfeld

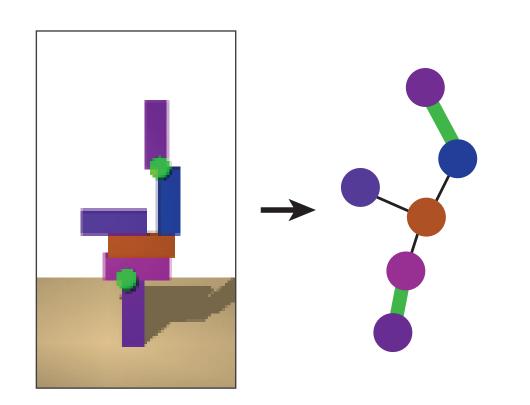
Pushmeet Kohli

Tobias Pfaff

DeepMind

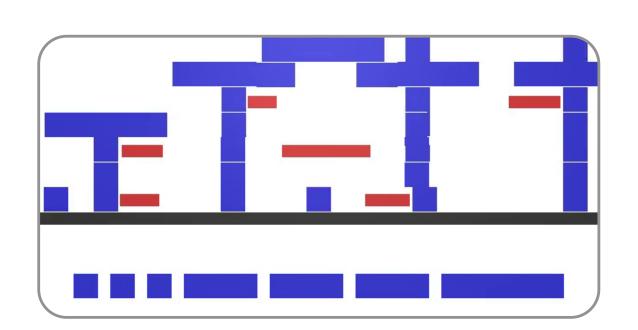


Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, et al. (2018)



Hamrick*, Allen*, Bapst, Zhu, McKee, Tenenbaum, & Battaglia (2018)

*equal contribution



Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (2019)

*equal contribution

