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Human Thought is Highly Structured
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How do we build Al that can...

® Understand hierarchical relationships, like family

- ' ?
structure or evolutionary history: All of these are forms of

reasoning that (in
humans) require
understanding the world
N terms of entities, the
relations between
them, and the rules for
composing them.

e Understand how objects in the world interact with
each other under different physical dynamics®?

® Make analogies between disparate phenomena,
despite a lack of surface similarity?

® Perform novel thought experiments—or even real
experiments! —to gain insight about the world?
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Structure: the product of composing
a kKnown set of entities and relations
according to a particular set of rules.

VWhat should structure ook
ike In modern Al systems”?
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Outline

1. Structure and inductive bias in deep learning
2. Graph networks for deep learning on graphs
3. Graph networks for physical inference

4. Graph networks for physical construction
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Deep Learning

Supervised Learning Unsupervised Learning Reinforcement Learning

Gradient-based optimization (“backpropagation”) “Lefs” of differentiable,
Usually stochastic gradient descent nonlinear functions
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The Multi-Layer Perceptron (MLP)

Rosenblatt (1961)

Linear(z) := Wx + b

@% FC(z) := ReLU(Linear(z))

MLP(z) := Linear(FC(- - - FC(z)))

RelU Sigmoid Tanh
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The Convolutional Network (CNN)

Fukushima (1980), LeCun et al. (1989)

Conv(x) := ReLU(z x W)

\
Ifl

Usually multiple convolutions with
different weights are applied to the
same input

Sharing in space

/
ﬁ

Often followed by an additional
nonlinearity to reduce the size, such
as “max pooling”
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AlexNet

Krizhevsky, A., Sutskever, |., & Hinton, G. E. (2012)
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The Recurrent Network (RNN)

Elman (1990)

Yy, hii1] = RNN(x, hy) := MLP(|x, h¢])

e

In practice, modern RNNs like LSTMs
(Hochreiter & Schmidhuber, 1997) or
GRUs (Cho et al. 2014) use a more
complicated base function than an MLP

/ Sharing in time \

A
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Seqguence2Sequence

Sutskever, |, Vinyals, O., & Le, Q. V. (2014)

Ich heisse Jess

e R e
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The Story So Far
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Sharing in space
Sharing in time
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Fully-Connected Layer Convolutional Layer Recurrent Layer
Fixed size tensors Variable size tensors Variable-size ordered
sequence of tensors
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b DeepMind

INnductive Bias

Inductive Bias: the part of a learning algorithm which
allows it to prioritize one solution (or interpretation) over
another, independent of the observed data (Mitchell, 1980)

A a
|

,/,/ /

Model Complexity

» Bias
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/ Variance

CNNs prefer

solutior

spatial

s which are
y invariant.

RNNS prefer
solutions In which
order matters.
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What other forms of (architectural)
inductive bias might we be able to use”

Relational inductive bias: prioritizes
solutions In which there are rules tor
combining entities and relations.
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Beyond lensor Data
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History of Graph Neural Networks

Scarselli et al. (2009) "The Graph Neural Network Model”.
Summarizes the initial papers on the topic from ~2005-2009. Very general formalism.

Li et al. (2015) “Gated graph sequence neural networks”.
Used RNNs for sharing update steps across time.

Bronstein et al. (2016) “Geometric deep learning: going beyond Euclidean data”.
Survey of spectral and spatial approaches for deep learning on graphs.

Gilmer et al. (2017) “Neural Message Passing for Quantum Chemistry”.
Introduced “message-passing neural network”™ (MPNNSs) formalism, unifying various
approaches such as graph convolutional networks.

Battaglia et al. (2018). “Relational inductive biases, deep learning, and graph networks”.

Introduced “graph network” formalism, extends MPNNSs, unifies non-local neural hetworks/
self-attention/ Transformer.
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Graph Networks

Battaglia, Hamrick, Bapst, sanchez-Gonzalez, Zambaldi, et al. (2018)

1. Takes graphs as input, return graphs as output
2. Invariant to the permutation of the nodes and edges

3. Scales to different numbers of nodes and edges

Attributes

OFEE & B
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Edge update

/

Graph Networks

Battaglia, Hamrick, Bapst, sanchez-Gonzalez, Zambaldi, et al. (2018)
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Graph Networks

Battaglia, Hamrick, Bapst, sanchez-Gonzalez, Zambalai, et al. (2018)

Edge block Node block Global block
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Composing Graph Networks

Ginp Gout

Shared GN Core Encode-Process-Decode Recurrent GN Architecture

\4

"Message Passing”
(Gilmer et al, 201 7)
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Vlessage Passing

Gilmer et al. (2017)
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What are graph networks good for”

‘Q DeepMind

Visual scene understanding
Few-shot learning
g physical dynamics

Predictir

Predictir

g m

Ulti-agent systems

Reasoning Ir
Predicting chemical properties of
molecules
Predicting road traffic

Image segmentation

3D mesh classification

Image region classification

® Semi-supervised text classification

kKnowledge graphs

24

® Machine translation
e Continuous control
® Object-oriented RL

® Symbol

e Combir

C planning
atorial optimization

Boolean SAT problems
Modeling cellular automata
Inference in graphical models
... and more!
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Humans are a “Construction Species”
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Stimulus

fb DeepMind

The Gluing Task

Hamrick™, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)

27

Joint work with
Kelsey Allen (MIT)

Goal: glue blocks together
to make the tower stable,
using the minimum
amount of glue.
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Hamrick™, Allen™, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)

Instructions (press 'h' to show/hide)
. Click on a block (or the floor) to select it.
. Click on another block (or the floor) to glue them together.
. Press enter to apply gravity to the tower.
. You earn 1pt for each block that doesn't fall.
. Each pair of blocks that is glued costs 1pt.
. If you use the minimum glue to keep the tower stable,
you earn a 10pt bonus.
. At least one glue is needed for each tower.

N

d
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practice
1/9
0.0

0.0
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Reinforcement Learning

Actions

Rewards

. e = — ——— e

Agent ' Environment

Observations
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Reinforcement Learning

Learn a “policy” which maximizes the sum of discounted expected future rewards

T'he Bellman Equation:

Q(s,a) =7+~ maxQ(s',a’)

a
Deep Q-Learning
. (DQN) approximates Q
Q-Learning. with a neural network

[ = Q(S,CL; (9) L (7“ 4 y - me}XQ(s’, CL/; (9)) that takes a single

State as input and
returns Q-values for all
possible actions.

Policy:
m(s) := argmax Q(s,a;0)

a
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| earning a Policy Over the Edges of a Graph

Hamrick™, Allen®, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)
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Agent Variations

Hamrick™, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)
(Trained & tested on towers of size 2-10 blocks)
Human: human baseline
MLP: multilayer perceptron agent

GN-FC: fully connected graph network agent

(hodes=Dblocks, edges=all-to-all)

GN: sparse graph network agent
(nhodes=Dblocks, edges=contacts)
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Results

Hamrick™, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)
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Results

Hamrick™, Allen*, Bapst, Zhu, McKee, Tenenbaum & Battaglia (CogSci 2018)
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-orce Propagation
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-orce Propagation

Edge update
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Edge update

-orce Propagation

Node update

thamric
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Humans are a “Construction Species”
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Initial

Final

Construction Tasks

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

(a) Silhouette
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Graph Network Agent (GN-DQN)

Bapst®, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

Observation (1) 4 Graph-based Argmax over ) Action (1)
Q-function edge Q-values

-
| C
L I
/ “Place block D

A
N : on block B,
|

8 on its top left”
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Silhouette

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

Silhouette
Relative GN—DQN
Episode: O Total Reward: 0.0
Step: O Reward: 0.0
| "
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Silhouette

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

Silhouette Silhouette
Relative GN—DQN Relative RNN—RSO
Episode: O Total Reward: 0.0 Episode: O Total Reward: 0.0
Step: O Reward: 0.0 Step: O Reward: 0.0
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Connecting

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

Connecting Connecting

Relative GN—DQN Relative RNN—RSO
Episode: O Total Reward: 0.0 Episode: O Total Reward: 0.0
Step: O Reward: 0.0 Step: O Reward: 0.0
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Covering

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

Covering
Relative GN—DQN
Episode: O Total Reward: 0.0
Step: O Reward: 0.0
|
I I
[E—

‘Q DeepMind

Covering
Relative CNN—RSO
Episode: O Total Reward: 0.0
Step: O Reward: 0.0
| D
I [l
[E—
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Covering Hard

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia & Hamrick (arXiv, 2019)

Covering Hard
Relative GN—DQN

Episode: O Total Reward: 0.0
Step: O Reward: 0.0
I -
]
HE N I N N

b DeepMind

Covering Hard
Relative RNN—RSO

Total Reward: 0.0
Reward: 0.0

Episode: O
Step: O
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Structure: the product of composing
a known set of entities and relations
according to a particular set of rules.

VWhat should structure ook
ike In modern Al systems”/

Graph Networks!
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Graph Networks in TensorFlow

https://github.com/deepmind/graph_nets

import graph_nets as gn
import sonnet as snt

# Provide your own functions to generate graph-structured data.
input_graphs = get_graphs()

# Create the graph network.

graph_net_module = gn.modules.GraphNetwork(
edge_model_fn=1lambda: snt.nets.MLP([32, 32]),
node_model fn=lambda: snt.nets.MLP([32, 32]),
global_model_fn=1lambda: snt.nets.MLP([32, 32]))

# Pass the 1nput graphs to the graph network, and return the output graphs.
output_graphs = graph_net_module(input_graphs)

Physics: rollout of mass-spring system pinned at ends

Time 0 Time 8 Time 16 Time 32 Time 48

= True
= Predicted
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Thanks!

Peter Battaglia
Victor Bapst
Alvaro Sanchez-Gonzalez
Kelsey Allen

Tina Zhu

Kevin McKee
Josh Tenenbaum
Andy Ballard
Razvan Pascanu
Oriol Vinyals
Nicolas Heess
Yujia Li

Carl Doersch
Kim Stachenfeld
Pushmeet Kohli
Tobias Pfaft
DeepMind
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Battaglia, Hamrick, Bapst,
Sanchez-Gonzalez,
Zambaldi, et al. (2018)

Hamrick™, Allen®, Bapst,
/hu, McKee, Tenenbaum,
& Battaglia (2018)

“equal contribution

Bapst*, Sanchez-Gonzalez”,
Doersch, Stachenfeld, Konhli,
Battaglia & Hamrick (2019)

“equal contribution
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