

Suivi de projet du SERDI

(Détecteur, Instrument, Dispositif)

Maurice Cohen-Solal, Jimmy Jeglot, Olivier Lemaire, Jihane Maalmi, Jean-Luc Socha, Christophe Sylvia, Philippe Vallerand.

(SERDI - LAL – Université Paris-Saclay)

(3 stagiaires *ESIEE*)

LHC interaction

Janvier 2019

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

Membre de la « « Collaboration RD53» »

RD 53 Collaboration :

Development of pixel readout integrated circuits for extreme rate and radiation

WG1 : Radiation (Marlon Barbero)

WG2 : Top Level Design (Maurice Garcia-Sciveres)

WG3 : Simulation Test Bench (Tomasz Hemperek)

WG4 : I/O (Roberto Beccherle)

WG5 : Analog Design (Valerio Re)

WG6 : IP Blocks (Jorgen Christiansen)

Flavio Lodo : integration (micro électronique)

RD53 3 Weekly Vydio meetings and physical meetings on test and design

ITk-LAL Weekly physical meetings on Itk project

ITk-France Weekly vydio meetings and physical meetings on module

RD50 - Radiation hard semiconductor devices for very high luminosity colliders

~150 people from ~ 30 institutes :

- Bonn University
- <u>CERN</u>
- Dortmund
- Fermilab
- University of Glasgow
- INFN : Bari Bergamo-Pavia Milano Padova -Perugia - Pisa - Torino
- IN2P3 : <u>CPPM</u> LAL LAPP <u>LPNHE</u>
- <u>LBNL</u>
- New Mexico
- NIKHEF
- Prague IP/FNSPE-CTU
- RAL
- Seville University

Groupe de physique :

Abdénour Lounis, *Vasyl Drozd, Tasneem Rashid*, Dymitris Varouchas, Kostiantyn Sakhatskyi, Dmytro Hohov, Marc Escalier, Anatolii Korol, Anastasia Kotsoechagia.

Mécanique : Aboud Fallou.

Instrumentation : Stéphane Trochet.

Mission : D. Breton

Pôle : M. El Berni

RD53

Working

Group

Features of electronics chips

E allastic

Groupe ATLAS

LHC-HL **(2023)**:

1000			A DESCRIPTION OF THE OWNER OF THE	L				
							500 k€	2 M€
					FEI3	FEI4B	RD53A	ATLAS
				Année	2003	2011	2017	2019 ?
				Technologie [nm]	250	130	65	65
ATLAS P	xel Defector	FE-I4 Inserta	able B-Layer	Taille [mm²]	7.6x10.8	20x19	20x11.8	20x21
(.	micro-soudure par billoure	Provide puce électronique		Zone active [%]	74	89	81	91
				Array	160 x 18	400 X 80	192 x 400	384 x 400
bump) 	puce détecteur		Nombre de pixel	2 880	26 880	76 800	153 600
	5 ATLAS pixel institutes		30 ATLAS pixel institu	Taille pixel [µm ²]	50 X 400	50 X 250	50 X 50	50 X 50
EIS	7 ATLAS pixel institutes		Nombre de transistors [Million]	3.5	87	550	940	
				Débit de sortie [Gbit/sec]	0.04	0.64	2 x 1.28 & 5.12	ldem ?
FEI3	FEI4B	RD53A	ATLAS-ITk	Rendement [%]	80	60	?	?
I	Biggest chip in HEP to date			Puissance [W/cm ²]	0.25	0.25	0.5	1

Commande des tranches : sept. 2020

Beam Shape

Configuration 1/2 Column of 200 Cells

Conf Column Chip (C3)

Layout « top level »

TSMC 65nm

- Size 1 mm x 1 mm (pitch 50µm x 50µm)
- PADs on 2 sides

200 "pixels"

 $\equiv \frac{1}{2}$ column

Setup Test board C3 at LAL & at CERN

Fonctionnement normal en irradiation

Proton energy: 24 GeV

Flux 3e⁸ protons/cm2

Erreurs RadHard latches : Dose intégrée Singe Event Upset Singe Event Upset (pendant le faisceau)

Single Event Upset intégrés

Positions transverse

Profil transverse (5mm x 5mm)

Profil longitudinal

Sections efficaces mesurées : $\sigma_{standart} \approx 2.8 \times 10^{-14} cm^{-2}$ flip-flop $\sigma_{normal} \approx 6.2 \times 10^{-15} \rm cm^{-2}$

 $\sigma_{enclosed} \approx 5 \times 10^{-15} \rm cm^{-2}$

 $500 [MHz/cm^{2}] \times 160\ 000 \times 16 \times 2.8e^{-14} = 64\ bits\ flips\ [sec^{-1}]\ par\ chip\ pixel$

1% des pixels affectés après 48 [sec]

(Jimmy, Jihane, Christophe, Kostantin, Maurice)

• YARR

Xpressk7 board + Fmc Ohio

mini Display Port cable

- Xpressk7 k325
- FMC Ohio board
- Mini display port RD53A SCC
- CentOS

https://gitlab.cern.ch/

BDAQ53

KC705

Mini display port - SMA

ASUS H1 10I-PLUS computer

4 mini Display Port on Ohio Fmc board

٠

Enceinte thermique

RD53A Arrivé Décembre 2017

rd53a_proto_analog_Occupancy_LDO

Simulation Shunt Low Drop Out au LAL

ShuntLDO simulation – firsts studies

Circuit scheme and its parameters studding

RD53A & Ring oscillator block diagram & layout

TSMC 65nm technology

- With excluding of the data for periods, when *Vddd* jumped.
- (Cutting: Vddd > 1.13V & Vddd < 1.15V)

LAL measurements

(Vasyl Drozd, Luis Miquel Casas, Dzmitry Maneuski, Jimmy Jeglot, Maurice Cohen, Anatolli)

Ring Oscillator layout organisation in A BLASCHIP RINGOSC_B

Typical layout

All the symbols are finished but not all the schematics

Numerous simulations for all oscillators & blocks not yet finished :

- extracted (room & -20°C)
- Slow corner (schematics, extracted, room & -20°C)
- Also versus VDD (schematics, extracted, scan T°)

Blocks simulations (LVT, FF, Capa)

Layout :

Verifications DRC, LVS (Calibre needed)

Modelling & specifications for RTL verification:

Verilog behaviour & Logic simulation to Verilog code

ROMIC chip is arrived (packaging ongoing)

ROMIC test, (card ok, firmware & software ongoing)

Final Design review 6-8 may at CERN

ROMIC could be used as stand alone chip in other applications

Layout :

A block ok B block finished FF (only ring osc) LVT (only Ring Osc)

TOT haute resolution :

MOM Cap oscillator ongoing (mesure de la dispersion de la capacité d'injection)

Top cell commencée

Abstract needed

Backup slides

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

dépasser les frontières

Pourquoi le développement des détecteurs pixels ? particules

 \bigwedge

 \bigwedge

Micro-bandes (double faces)

The silicon micropattern detector : a dream ?

(1987)

ABSTRACT

Λy

The present use of silicon microstrip detectors in elementary particle physics experiments is described and future needs are evaluated. Possibilities and problems to be encountered in the development of a true two-dimensional detector with intelligent data collection are discussed. This paper serves as an introduction to various other contributions to the conference proceedings, either dealing with futuristic device designs or with cautious steps on the road of technology development.

Х

All the symbols are finished but not all the schematics

Simulations of all RD53B oscillators:

- Schematics & extracted (VDD, T°, verife the 40MHz)
- Same in Slow corner
- Add injection capacitance (dispersion)

TOT haute resolution :

Climate chamber (in LDO & Direct powering):

- <u>Exhaustive measurements (« absolute calibration »)</u>
- <u>Cross check with simulations</u>
- Cross check Ring oscillators & CPPM sensors
- Digital scan
- Analog scan

....

Tests card for ROMIC (Firmware et Software)

ROMIC irradiation

Design the 5 oscillators flavours for RD53B (in Deep N Well) 42 oscillateurs en tout

Modélisation comportementale

Mai – juin 2019 : intensives vérifications

ROMIC could be used as stand alone chip in other applications

2 x RD53A assemblés bump bondé (LAL, LPNHE, avril 2019)

Intégration des modules (source, laser, faisceau)

Septembre 2019 : arrivée de RD53B

Power Service des modules ; stabilité.

RD53B Simulation [The whole block_B was simulated with Spectre]

counters zoom :

Counters_output

Counters_output

3(6) Trace: //31/i7/net11; Context. /users/elec/mcohenso/simulation/RD53_RINGOSC_LAL_LIB/sim_block_B/adext/results/data/.tmpADEDir_mcohenso/RD53_RINGOSC_LAL_LIB.sim_block_B:1/simulation/sim_block_B/spectre/schematic/psf; Dataset: 1

(Maurice c s, Kostiantyn Sakhatskyi)

RD53B Simulation [block_B simulation ; counters zoom]

Architecture de la puce

24 x 24 voies d'électroniques

90 µm rms

solal@lal.in2p3.fr

WG1 : Radiation

Crantus

Enrichir avec Status65nm_ap...

Recommandations analog block :

–PMOS W≥300nm, L≥120nm ; NMOS L≥120nm → puissance, surface, performa –Travail présent : Modélisation (extraction de paramètres "Radiation corner").

TRL	with	dela	ays
-----	------	------	-----

		Error rate Number of errors/ spill			
	area	0 to 1	1 to 0	All	
DFF for shift register	14.4 µm²	5.6	2.9	4.2	
TRL for configuration	40 µm²	0.082	0.04	0.06	
TRL + delay	54 µm²	0.064	0.015	0.04	

Optimisation buffers & lines for <u>1 column</u> of 400 pixels

LABORATOIRE DEL'ACCÉLÉRATEUR LINÉAIRE

1 mm x 1 mm pitch 50µm x 50µm

WG1 : Radiation

Enrichir avec Status65nm_ap...

Recommandations analog block :

–PMOS W≥300nm, L≥120nm ; NMOS L≥120nm → puissance, surface, performa –Travail présent : Modélisation (extraction de paramètres "Radiation corner").

TR	L with	delays
----	--------	--------

		<u>Error</u> rate <u>Number</u> of <u>errors</u> / <u>spill</u>			
	area	0 to 1	1 to 0	All	
DFF for shift register	14.4 µm²	5.6	2.9	4.2	
TRL for configuration	40 µm²	0.082	0.04	0.06	
TRL + delay	54 µm²	0.064	0.015	0.04	

Extracted simulations & measurements frequencies

Version A

	Simula scher	ations natic	Simulations extracted			Measurements at CERN			Measurements at LAL	
Flavours	T = +27°C VDD = 1.2V	T = - 20°C VDD = 1.2V	T = +27°C VDD = 1.2V	T = - 20°C VDD = 1.2V	T = - 10°C VDD = 1.13V	Room T° VDD = 1.2V	Room T° VDD = 1.12V	T = -10°C VDD = 1.13V	T = - 10°C VDD = 1.12V	T = - 20° C VDD = 1.12V
CKND0	887	933	502	524	462	408	352	395	398	406
INVD0	895	940	478	499	438	392	337	377	383	390
NAND4D0	869	918	483	506	435	383	322	372.5	372	380
NOR4D0	912	960	545	569	487	420	349	406	406	416
CKND4	889	936	660	691	608	645	556	630	630	642
INVD4	897	946	648	679	598	631	543	613	616	627
NAND4D4	914	969	686	726	624	658	554	623	641	655
NOR4D4	906	940	687	717	615	645	538	614.5	625	639
Mauric	sa Mashina Oliviar		Ť		t	Î				

(Maurice, Moshine, Olivier, Luis, Vasyl, Jimmy, Abdénour)

f_{osc} [MHz]

WG5 : Analog Front-End Design

Une amusoire

1 of 4 in quad "analog island" of FE65_P2

Synchronous: resets every bunch crossin. Flash ADC

Single stage with SAR-like ToT counter using synchronous comparator fast

RD53A chip

price ~ 90% engineering run (Full Maskset)

Mini ASIC 2mm x 2mm = 17 000€ + 1 000€

(C3) → 1 mm x 1mm = ¼ (18 000) = 5 150 €

- (RD53-A)→ 20 mm x 12mm ~ 500 k€
- MLM Multi Layer Mask
- NRE (Non-Recurring Engineering) wafer price
 220 k\$ / mm²

• Engineering Run (RD53-A) → 20x12 mm² ≡ ~ 1 M€

(RD53) → 400 mm² ≡ 2,2 M€

Wafer nécessaire pour le bump bonding

Sigmatone

SEMI AUTOMATIC PROBE STATION

Measurement from -60 °C to 300 °C

Test, caractérisation & appariement

New 50 m2 cleanroom with acquisition of semi-automatic testing system machine. For medium or large scale testing, such as for the HL-LHC.

RD53-A ATLAS-Itk-Pixel

Analogue Front End

Digital Pixel: Regional Architecture

- Store hits locally in region until L1T.
- Only 0.25% of pixel hits are shipped to EoC
 → DC bus traffic "low".
- Each pixel is tied to its neighbors -time info-(clustered nature of real hits). Small hits are close to large hits! To record small hits, use position instead of time. Handle on TW.

Summary:

- Physics simulation \rightarrow Efficient architecture.
- Spatial association of digital hit to recover lower analog performance.
- Shared resources & hit not moved around
 → Lowers digital power consumption.

Pixel Chip

Current scheme (i.e. "Wait Then Transfer")

RD53 Collaboration Meeting – 14/10/2015 – Elia Conti (CERN)

Pixel chip model & I/O

Cahier des charges ATLAS-Itk-Pixel

I/O

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

Pixel Region (PR)

2 architectures possibles :

- Compteurs de latence distribués (behavioural)
- Zero supress FIFO Hit loss

~ 40 bits par pixel dans la **PR**

RD53A: 196 rows x 400 columns Soit 78 400 pixels

Core = **4** x **PR** = 8x8 pixels (inclut tout)

10µs / 25ns 400

46

Symbol Name	Encoding	Trigger Pattern	Symbol Name	Encoding	Trigger Pattern
			Trigger_08	0011_1010	T 000
Trigger_01	0010_1011	000T	Trigger_09	0011_1100	TOOT
Trigger_02	0010_1101	00T0	Trigger_10	0100_1011	ΤΟΤΟ
Trigger_03	0010_1110	OOTT	Trigger_11	0100_1101	TOTT
Trigger_04	0011_0011	0T00	Trigger_12	0100_1110	TTOO
Trigger_05	0011_0101	OTOT	Trigger_13	0101_0011	TTOT
Trigger_06	0011_0110	0 TT 0	Trigger_14	0101_0101	TTT0
Trigger_07	0011_1001	OTTT	Trigger_15	0101_0110	TTTT

15 patterns de commandes trigger (sur 4 Bunch Crossing ; indique quel(s) BCO est « triggered »)

	(Autres)							
	Command	Encoding	ID/(A)ddress/(D)ata 5-bit Fields					
Reset Compteur d'Evénements	ECR	0101_1010	(contrôle de 8 CH	(contrôle de 8 CHIPS par câblage, broadcast)				
Reset Compteur de BC	BCR	0101_1001	\rightarrow					
	Glob. Pulse	0101_1100	ID<3:0>,0	D<4:0>				
	Cal DIG	0110_0011	ID<3:0>,0	D<4:0>	D<4:0>			
configuration 🛛 ——	Cal ANA	0110_0011	ID<3:0>,1	D<4:0>	D<4:0>			
data[16] <	WrReg	0110_0110	ID<3:0>,0	A<8:4>	A<3:0>,D<15>	D<14:10>	D<9:5>	D<4:0>
AddCol [9]	WrPixel	0110_1001	ID<3:0>,D<15>	D<14:10>	D<9:5>	D<4:0>		
	RdReg	0110_0110	ID<3:0>,0	A<8:4>	A<3:0>,0			
	Sync	1000_0001_	_0111_1110					

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

	Symbol	Byte 1	Byte 2	Comment			
	Comma	10000001	01111110	for synchronization -	\rightarrow SS (6 x « 0 » or	6 x « 1 » : le	e max)
	idle	10101010	= byte 1	no command or trigger		• // · · · · · · · · · · · · · · · · · ·	(1 trame de synchro toutes les 32 trames)
_	T0001	11010001	= byte 1	single triggers			
	T0010	11010010	= byte 1				
	T0100	11010100	= byte 1				
	T1000	11011000	= byte 1				
	T1001	10011001	= byte 1	double triggers			
	T1010	10011010	= byte 1		Les T interrom	pent les	data streams
	T1100	10011100	= byte 1				
	T0101	10010101	= byte 1		Les l'couvrent	4 BCO	
	T0110	10010110	= byte 1				
	T0011	10010011	= byte 1				
	T0111	1 1000011	= byte 1	triple triggers			
	T1011	10001011	= byte 1				
	T1101	10001101	= byte 1				
	T1110	10001110	= byte 1				
_	T1111	11001100	= byte 1	quad trigger			
	C1	10101001	= byte 1	standard commands			
	C2	10101100	= byte 1			Co	nfigurations 34 bits
	C3	10100101	= byte 1			Err	eurs 16 bits
	C4	10100110	= byte 1		dont calibration	Wa	arning 16 bits
	C5	10100011	= byte 1			Ma	phitoring 16 bits
	C6	10110001	= byte 1			IVIC	Difforming to bits
	C7	10110010	= byte 1				
	C8	10110100	= byte 1				
	C9	10111000	= byte 1				
	Payload data	01aabbcc	01ddeeff		Data utiles (sortie)	32 bits	

15 -

49

Profiles de dopages pour calibrer les simulateurs

WG3 : Modélisation & Simulations Universal Verification Methodology (UVM)

Cahier des charges ATLAS-ITk-Pixel-FE

Sensor, hit rate, tigger

Spécification	Valeur	commentaire
Sensor thickness	150 μm	
Passivation	non	HV sur les bords ?
Courant d'entré	négatif	Max avant dommages ? (high dE/dx , beam loss,)
MIP [électrons]	~ 12 000 (théorique)	↘ (Small pixel et irradiation) (÷2)
Peak de Landau (MIP)	2 000 e-	Après irradiation (50 % de perte) (RD43A)
Discharge	100 ns / MIP	
Pileup	≤1% (≡ return to baseline <400ns)	Hit still discharging, 10ke ⁻ , 2GHz/cm ²
Occupancy	0.2% par pixel	par BC à 3 Ghz/cm ²
Capacité	<u>100</u> - 200 fF	Edge x2
Courant de fuite (après irradiation)	<u>10</u> - 20nA	(and Edge x2)
Pixel size	50x50 μm²	
Hit rate nominal	500 MHz/cm ²	
Hit rate Max	$1-2 \text{ GHz/cm}^2 \equiv 0.15\%/\text{pixel/BC}$	$4 \text{ cm}^2 \text{x} 1.5 \text{ GHz/cm}^2 \text{ x} \text{ B} \text{ bits},$ where B is the number of bits per hit pixel needed to store.
Hit loss	≤1% analog (<=0.1% digital)	
Hit loss total	<1% (efficacité 99%)	<3 GHz/cm ² >, 1MHz trigger, 10µs latency
Max hit loss	< 0.1%	< 75kHz/cm²>, 1MHz trigger, 10µs latency
Recovery après un fort signal	< 1µs	typique

Cahier des charges ATLAS-ITk-Pixel-FE

Front End

Spécification	Valeur	commentaire	
Pixel size	50x50 μm²		
Dispersion threshold (σ)	40 - 50 e ⁻	(100 max) tuned	
Threshold fluctuation [rms]	95 e ⁻	Dans le temps	
In time Threshold (dans les 25 ns)	600 e- (50%) ≡ 50μm de parcours (MIP)	Tuned, 50fF , (600e- ≡ 99% des particules)	
Threshold temps>25ns	1 200 e ⁻	Need time walk compensation or hit recovery	
Noise occupancy (pixels bruyants)	$10^{-6} \equiv 0.1$ noise hit /BC/chip	50 fF load; in a 25 ns interval	
ENC total	126 e ⁻	4.75xENC = probabilité 10^{-6} (threshold)	
ENC Front End	73 e ⁻		
Résolution mesure charge	≥ 4bit (0.96 eff)	ou 6 bits (0.99 eff) compressés ou 8 bits programmable	
ASIC size	~ 2.0 x 2.1 cm ²		
Bump pad opening	12 μm (Ø)		
Interactions	25 ns	~ 200 évènements par BC	
Hit time resolution	1 nsec		
L0 trigger / latency	<1 MHz > / 12.5 μs <mark>(programmable</mark>)	Digital buffering (pas de tracking)	
Ou (L0+L1) trigger (encodage<200ns) / latency	< 4 MHz> / 20 μs (≤ 30 – 35 ? μs programmable)	Trigger buffer depth = 16	
Consecutives trigger L0	\leq 4 dans 5 BCs, \leq 8 dans 0.5µs, \leq 128 dans 128µs	En calibration jusqu'à 16 consécutifs	

Consommation et Résistance aux irradiations

Spécification	Valeur	commentaire	
400 x 384 chip curent	1.4 A ?	max 2A	
Puissance	<u>0.5</u> -0.7 W/cm ² (1.2V – max 1.32V)	analog 4 μ A/pixel, digital 4 μ A/pixel (max 8 &6)	
Température	- <mark>40</mark> °C to +40°C		
Drift threshold	<5% / °C		
Charge perdue par le sensor	50% (minimum signal = 600e ⁻)	Après radiation	
SEU tolerance, data	<0.1% hit data loss	2GHz/cm ²	
SEU upset rate, full chip	<0.05/hr	1.5GHz/cm ² , MIP	
SEU upset rate, affecting single pixel	<10/s/chip	1.5GHz/cm ² , MIP	
Threshold drift	<15 e ⁻ / MRad		
Threshold dispersion drift	<60 e ⁻ / MRad	rms	
ToT drift	<2% / MRad		
ToT dispersion drift	<0.1 MIP / MRad	rms	
SEU tolerance, global config	<1 upset / 1 000 heures	2GHz/cm ² , MIP	
SEU tolerance, pixel config	<100 upset / 1 heure	1.5GHz/cm ² , MIP	
Total Ionizing Dose	10 MGy 1.5x10 ¹⁶ protons eq/cm ² 1 GRad /cm ²	Sur 10 ans à -15°C, au moins 500 Mrad (remplacement of layer L0)	

Section efficace SEU (TSMC 65nm) $\sigma = 5.0e-14$ [cm²]

I/O, Timing, fonctionnement

Spécification	Valeur	commentaire
Configuration débit	> 10Mb/s	effectif
Interactions	25 ns	~ 190 évènements par BC
PLL	160 MHz	Stabilité du 40MHz BC ?
Clock skew among pixels	2 ns	Mais ≠ 0
Contrôle interface	160 Mb/s (8 to 10 bit)	série
Output format	CML, SLVDS	70 ou 100 Ω ?
Débit de sortie	5.12 Gb/s	64b/66b protocol : Aurora, GBT,
Jitter sortie	< 100ps	
Pulse calibration (interne et externe)	500e ⁻ à 40 ke ⁻	Résolution 30-40 e ⁻ (jusqu'à 10ke ⁻)
Registres	Accès lecture /écriture	
HitOr	Coïncidences programmables	Self or specific patterns
Mesures	Assurance Qualité	À investiguer
Rendement	Redondance 7	Dépend du RD53A
Modes	Self trigger et sans trigger. Self tests (PoR)	
Tests, Self test de la fonctionnalité?	Scan chain	À investiguer
Reset	Fonctions ?, PoR (Ident.)	(-40°C to +40°C)

Anneau de garde

SOS-7.03.p2: CERNRD	53/RD53A @ /exp/elec/elro	d53/MICRO/IPS						
ile Project Modify Attr	s <u>S</u> elect <u>Tree</u> <u>B</u> evision	n					Help	1
erver: CERNRD53 Project:	RD53A Work Area: /exp/elec/el	rd53/MICRO/IPS Sele	cted: 0 Checked	Out 0			CLIO	
lierarchy		Locked	Rev	CLBV	CLTime	Change Summary	Create	7
		Locked	2	krueger	2017/02/09 15:08:30	Auto checkin for create.	ChkOut	1
RD53 MO	NITORING		1	menouni	2017/02/08 17:56:19	Auto checkin for create.	Chk In	1
B BD53 PoF	ExternalCAP v2		3	fpalomop	2017/03/02 01:49:25	Auto checkin for create.	Discard	1
RD53 RIN	GOSC LAL		1	loddo	2017/03/20 15:45:10	Auto checkin for create.	Tag	1
RD53 SEF	CML Bonn		1	tianyang	2017/03/13 10:27:00	Auto checkin for create.	Diff]
	CPPM		1	menouni	2017/03/15 10:59:25	Auto checkin for create.	History	
	00		1	mkaragou	2017/02/20 20:54:37	Auto checkin for create.	SelLst]
RD53 Shu	IntLDO2A Testch	apradasl	7	mkaragou	2017/03/13 22:57:11	Auto checkin for create.	Edit	
🖷 📾 RD53 Shu	IntLDO Testchip		1	mkaragou	2016/09/13 17:10:17	Auto checkin for create.	Chat]
BEU TEST	LIB CPPM		2	menouni	2016/11/22 11:01:28	Auto checkin for create.	Update	
BGF	v		1	elconti	2016/07/05 11:05:09	Auto checkin for create.		
🖷 📾 TMPRDSEI	NS_CPPM		1	menouni	2017/02/02 18:00:08	Auto checkin for create.	-	
🖷 🗈 IPs.SVM.li	b~		1	fpalomop	2017/03/01 22:39:20	Initial revision.		
🖷 🗎 IPs.lib			57	lugaioni	2017/03/31 12:00:14			
🖷 🖿 IPs.lib~ 💩		prin	1	prin	2017/01/20 10:06:44	Initial revision.		
🖻 🖻 Assura								
🖷 🛱 Calibre								
B C RD53_RIN	G_OSC_LAL							
🖷 🗇 nc_verilog	3							
pvs_drc								
🖷 🗇 simulation	n							
🖷 🖿 test								
-🗈 .cdsinit								
-BRD53_RIN	G_OSC_LAL.tar.g							
— assura_te	ch.lib							Constant and the
— 🖹 casLog								HOIT
—li cds.lib								
- CdsLibEdi	tor.log							
- CdsLibMg	r.il							
- I defin.log							-	itor L Editing: e
l.	[[4])×	•				4		/ <u>C</u> reate Chec <u>k</u>
## Using SSL	Certificate from: /CN	-micdmarv07.cer	a.ch					
## Setting d ## Checked o	efault group to 'lal' at license 'clio_sos_e	for user 'mcohe nt_ul' for user	'mcohenso',	t 'RD53A'.				
** Authentic	ation successful. Client and server rele	ase mismatch.					- 1	
Client Releas	se - '7.03.p2'. Server	(CERNRD53) Rel	ease - '7.03	.p5'.				
Client Releas	se - '7.03.p2'. Server	(CERNRD53) Rel	ease - '7.03	.p5'.				
							1005	📕 Revisic
								Charles
								Status
								<mark>.</mark>
								
								NP-
							A - 238	F 28%
								••••••
								in the second second
								- (-200n. v=1.2)
							Ci 🍉	•
								tamc28N

Editors

ClioSoft Confidential © 2014 ClioSoft Inc.

ITk implementation

Une amusoire -

Couche interne still the highest BW Opto box OPT. _ GBT RCVR Multidrop to 2-chips or 4? 1 twisted pair 160Mbps Same as IBL data output, but wan << mass twisted pair Are GBT drivers good enough? Need pre-emphas FE FE 5 Gbps)twinax/hybrid OPT. RCVR DRVR N° de série Id. par câblage

1 module = 1quad

10 000 modules pixel detector

1 échelle (stave) = 78 module ?

·

« Inner Tracker »

Total errors number vs fluence 8-17 November, not during beam , 2nd Read

Kostiantyn Sakhatskyi

LAL, Orsay, 14.03.18

61/17

Industry offers 3-D methods

institute	TSV diameter as ra	spect filling p stic/depth	itch type	interconnection type	pitch d	w lameter	er size	ſ	European n
CEA Leti	30µm 40µm 60µm	1.5:1 Cu liner 03:01 02:01	from backside to M1 80µm	solder pillar (Cu- SnAg) solder bumps (Cu SnAg)	50μm 120μm	25µm 80µm	200/300 mm for TSV?	•	4 side abuttable dev
CMP/MOSIS	100µm	2.5:1 (250 μm) Cu liner?	via middle 400μm with 0.35 μm CMOS					•	Shrink pixel
EMFT	2 μm 10 μm	> 8:1 Tungsten 4:1 (40µm) Tungsten/C	4μm apect ration: 16:1 20 μm	SLID (SnCu)	< 30 µm	25 µm	Super-Contacts		- Pas de wire bonds (
IZM	15 µm large (100µm?)	50 µm Cu filling Cu lining	30 μm interposer large tapered (>100 μm?)	SnAg(Cu), CuSn, Au, In Au nano porous	20 µm?	10µm			- Pas de bump bonds Rapidité I/O
IMEC	25µm	2:1 (50µm) Cu filling	40μm via last	CuSn (in)	20µm		Gate Poly STI (Shallow Trench Isolation)	•	Consommation I/O
	5μm	4:1 (20µm) Cu filling	via middle (with 130nm in- 10µm houswe CMOS)		(rohus)		W (Tungsten contact & vias) Cu Interconnect (M 1 - M 5) Cu Bondpoints (M6, Top Metai) A / Padut	•	Coût (réduction 40)
VTT	60µm (top)	2:1 (120µm) Cu lining	90μm tapered (86deg)	SnPb, InSn, PbSn, SnAg	25µm	50µm			
T-Micro	0.5-2.8 μm (tapered) 2.5 μm	< 40µm tungsten < 55 µm polysilicon	~10 μm via last small via first	microbumps + adhesive	5µm	2µm	ια ξει 1	20	0/

Driver load: CLC (0.5 pF, 1nH, 1pF) and 100 Ω termination resistance

Sensors

FE Chips

Interconnect

Instead of wire bonding, TSV could be considered in 65nm technology in chip periphery for improved the time transit. (Collaboration with the CEA LETI-Grenoble)

Services staves

DCS Concept

Sketch of the DCS components on a half stave.

Omegapix_1 130 nm Chartered Semiconductor 64 x 24 pixels, pas : 50μm x 50 μm

Omegapix_2 (3D) **130 nm Global Foundries** 96 x 24 pixels, pas : 35μm x 200 μm

FE-I3 (2003)250 nm IBM18 x 160 pixels,pas : 50μm x 400 μm

FE-I4-B (2011) 130 nm IBM 80 x 336 pixels, pas : 50μm x 250 μm

