TOP Particle ID in the Belle II Barrel

Oskar Hartbrich University of Hawaii at Manoa

LAL Orsay 07/24/2019

What to Expect

- Overview of Belle II and SuperKEKB
 - Key detector technologies in Belle II
- The TOP barrel PID
 - Concept
 - Technologies
 - Experiences
 - Preliminary performance figures
- Highlights from the first "full Belle II" data

The Belle II Collaboration

• Truly international: now ~980 researchers from 26 countries

B-Factory Experiments

- Asymmetric beam energies, high luminosity \rightarrow High statistics of boosted B, D and τ
- Flavour physics
 - CKM matrix, unitarity triangle
 - CPV in B system
- BSM limits
 - Rare B/D decays
 - $\quad b \to s \gamma, \ b \to s l^+ l^-$
 - LFV in τ decays
- New particles
 - Tetraquarks

SuperKEKB

KEKB head-on (crab crossing)

overlap region = bunch length

Eь

φ

βx^{*}/βy^{*}

 σ_{x}^{*} 100-150 µm

 σ_{-} 6-7 mm

Beam energy

Beam crossing angle

β function @ IP

Beam current

Luminosity

40x higher instantaneous luminosity

KEKB

22

1200/5.9

2.1 x 10³⁴

LER

3.5

1.64

- Nano-Beam scheme \bullet
 - New final focus system

Challenges on the Detector Upgrade

- Significantly increased beam backgrounds (x10-20 x?)
 - Faster frontend electronics to reduce background pileup
- Increased trigger rates, data transfer bandwidth (x10-100)
 - Overhauled DAQ system, pipelined readout
 - Full reconstruction in high level trigger farm (~3000 cores)
- Reduced initial state boost (-30%)
 - Higher resolution vertexing detectors
 - Addition of two layers of pixel sensors

Belle II Detector Upgrade

Belle II Detector Upgrade

Key Technologies in Detector Upgrade

- State-of-the-art silicon detectors
- Pixelated single photon sensors
 - MCP-PMTs in TOP (barrel PID) time resolution
 - HAPDs in ARICH (end cap PID) large area
 - SiPMs in KLM low cost
- Waveform sampling readouts
 - TOP: 8192 channels, 2.7GSa/s: IRSX (Hawaii)
 - Sci-KLM: 16800 channels, 1GSa/s: TARGETX (Hawaii)
 - SVD: 224k channels, 32MSa/s: APV25 (adapted from CMS)
 - CDC: 14336 channels, 30Msa/s
 - ECL: 8736 channels, 2MSa/s

Belle II Barrel PID: A DIRC Derivate I

- DIRC: "Detector for Internally Reflected Cherenkov Light"
 - B. Ratcliff, SLAC PUB637 1
- Excellent solution to barrel PID needs in B-factories
 - Thin: Only radiator + casing in front of calorimeter, sensors outside of barrel region

Belle II Barrel PID: A DIRC Derivate II

- DIRC design has huge "stand off box" expansion volume in endcap region
 - Not compatible with the hermeticity requirements of Belle II
- How to evolve on the DIRC concept? Add timing!

The "Time of Propagation" (TOP) Detector I

- Instead of reconstructing the full ring image, measure time of propagation (path length) of individual Cherenkov photons.
 - Cherenkov photons from lighter particles arrive earlier on average
 - Since collision timing is well known (in principle), measure ToF at the same time
 - Chromatic dispersion is really not making this easier...

The "Time of Propagation" (TOP) Detector II

- Complicated patterns of different photon arrival times in each channel
 - These patterns strongly depend on the particle momentum, angle and position of incidence

The "Time of Propagation" (TOP) Detector II

- Complicated patterns of different photon arrival times in each channel
 - These patterns strongly depend on the particle momentum, angle and position of incidence

The "Time of Propagation" (TOP) Detector III

- 16 quartz Cherenkov radiator bars arranged around IP
- Forward side: spherical mirror
 - Effectively removes bar thickness for reflected photons
 - Different wavelengths are focused on slightly different points
- Backward side: small expansion prism, sensors, readout electronics
 Bar/mirror width

Quartz & Optics I

- Bars:
 1250 x 450 x 20 mm³
 two bars per module
- Mirrors:
 100 x 450 x 20 mm³
- Prisms:
 100 mm long, 456 x 20 mm²
 at bar face expanding to
 456 x 50 cm² at MCP-PMTs
- Material: Corning 7980
- DIN58927 class 0 material has no inclusions (inclusions ≤0.1 mm diameter are disregarded)
- Grade F (or superior) material having index homogeneity of ≤5 ppm over the clear aperture of the blank; verified at 632.8 nm
- Birefringence / Residual strain ≤1 nm/cm

Quartz & Optics II

- Quartz most expensive part of the system (~10M\$)
- Extreme surface quality requirements

Televene	Constituentia		D	F - 11		
Iolerance	Specification	Measurement	Pass	Fail		
S1 Datum A Flatness	≤ 6.3μm	1.731	X			
S1 Local Flatness over 200mm Area	≤ 1.8µm	0.678 Max	X			
S2 Flatness	<u>≤ 6.3µ</u> m	2.706	x			
S2 Local Flatness over 200mm Area	≤ 1.8µm	1.462 Max	x			
S3 Datum B Flatness	<u>≤ 6.3µm</u>	2.952	x			
S4 Flatness	≤ 6.3μm	1.472	x			
S5 Datum C Flatness	≤ 25µm	1.425	x			
S6 Flatness	≤ 25μm	2.633	x			
S1 Parallel S2	≤ 4 arcsec	≤ 1.4	x			
S1 Perpendicular S3	≤ 20 arcsec	≤ 5	x		Section and the section of the	
S1 Perpendicular S4	≤ 20 arcsec	≤ 3	X			
S1 Perpendicular S5	≤ 1 arcmin	≤ 0.083	x			
S1 Perpendicular S6	≤ 1 arcmin	≤ 0.05	x			
S3 Parallel S4	≤ 60µm (10 arcsec)	≤ 7 arc sec	x			S
S3 Perpendicular S5	≤ 20 arcsec	≤ 5	x			
S3 Perpendicular S6	≤ 20 arcsec	≤ 5	x			
S5 Parallel S6	≤ 20 arcsec	≤ 10	x			
Surface Roughness S1	≤ 5 Å rms	3.064	x			
Surface Roughness S2	≤ 5 Å rms	3.045	x			
Surface Roughness S3	≤ 5 Å rms	4.035	x			
Surface Roughness S4	≤ 5 Å rms	3.127	x			
Surface Roughness S5	≤ 25 Å rms	13.887	x			
Surface Roughness S6	≤ 25 Å rms	16.991	x			
Length	1250 ±0.50mm	1250.37	x			
Width	450 ±0.15	450.08	x			
Thickness	20 ±0.10	20.09	x			

September 5, 2016

TOP: Total Internal Reflection

TOP Readout: Requirements

- Goal: <100ps single optical photon time resolution
- Sensor requirements:
 - single photon efficiency
 - <50ps single photon time resolution
 - ~few mm spatial resolution
 - Operation in 1.5T B-field
- Electronics requirements:
 - 30kHz trigger rate
 - <50ps electronics time resolution
 - <30ps clock distribution jitter

TOP Readout: Micro-Channel-Plate PMTs

- Very fast amplification, but not well controlled
 - Good time resolution, single photon efficiency, but large output spread
- (Mostly) resistant to B-fields
- Pixelated anodes for spatial resolution

Hamamatsu MCP-PMTs

- Measured single photon time resolution <40ps
- Lifetime (integrated charge) is limited
 - Original version ~1C/cm² (~50% of TOP)
 - ALD and LE-ALD versions: >10C/cm² (other ~50% of TOP)

TOP Readout: Electronics

- Reads MCP-PMT signals
- Time resolution <50ps
 - ~GSa/s sampling
 - ~500MHz bandwidth

TOP Readout: Electronics

- Reads MCP-PMT signals
- Time resolution <50ps
 - ~GSa/s sampling
 - ~500MHz bandwidth
- 8192 channels
- Affordable
- Low power
- Small form factor
- Online data processing
- etc. etc.

Readout: Electronics

- "Oscilloscope on a Chip": IRSX ASIC
 - Designed by IDLAB, UH (Prof. Gary Varner)
- Operated at 2.7GSa/s in TOP
 - ~600MHz analog bandwidth
 - 32k analog buffer cells (~10us)
 - 12 bit digitisation w/o deadtime
- Power budget ~600mW/ch
 - ASIC: ~125mW/ch
 - Preamp: ~150mW/ch
 - FPGAs: ~300mW/ch

Hawaii Waveform Sampling ASICs

- Hawaii Instrumentation Development Lab spinoff: Nalu Scientific
 - Founded by Isar Mostafanezhad (ex-postdoc of IDLab)
- Commercialisation of switched capacitor waveform sampling ASICs based on IDLab designs
- Three ASICs available:
 - SiRead: 32 channels, ~1 GSa/s
 - ASoC: 8 Channels, ~3 GSa/s
 - Aardvarc: 4 Channels, ~14 Gsa/s

Nalu Scientific

Data Acquisition Systems isar@naluscientific.com

Online Data Reduction

- Whole TOP stores 22x10¹² samples every second
- Only digitise relevant ASIC samples
 - Based on global trigger, local channel triggers
- Apply all raw data conditioning in frontend
 - Pedestal subtraction
 - Time base calibrations
- Extract waveform features in frontend
 - Photon timing, pulse shape parameters
- Write out only feature parameters
- Powerful frontend processing: 320 FPGAs, 640 ARM cores
 - Based on Xilinx Zynq SoCs

Feature Extraction in TOP

- Constant fraction discrimination
- Template fit to photon pulses
 - Computationally complex, possible on Zynq DSPs?
 - but only needed for low amplitude hits

27

Single Photon Time Resolution

- Intrinsic resolution <100ps on most channels
 - Laser jitter, pulser reference included (but small)
- Dominated by electronic noise in signal chain due to PMT operation at low gain

VXD Assembled

• PXD & SVD "married" since October 2018

VXD Installation

• VXD installed November 21st 2018, Belle II detector complete!

First Collision in Physics Run - 03/25/2019

32

... and the Reaction

Luminosity in 2019

• 6.5fb⁻¹ integrated from March 25th to July 1st 2019 (410pb⁻¹ for EPS-HEP)

Int. $lumi = 50 ab^{-1}$

34

- L_{peak}: 6.1x10³³ cm⁻² s⁻¹ (12x10³³ with Belle II off)
- Limited by backgrounds, beam-beam blowup
- New machine, entirely new concept, requires tuning

– Already running at world record β_y^* =2mm

TOP "Cherenkov Rings" I

- $D^{*+} \rightarrow D^0 \pi_s^+; D^0 \rightarrow K^- \pi^+$ "Nature's MC truth"
- Kaon facing prism-side of TOP bar
 - Little room for Cherenkov cone to open up
 - PDF differences dominated by ToF offset

TOP "Cherenkov Rings" II

- $D^{*+} \rightarrow D^0 \pi_s^+; D^0 \rightarrow K^- \pi^+$ "Nature's MC truth"
- Kaon facing mirror-side of TOP bar
 - PDF differences dominated by shape

TOP PID Peformance: K- π Separation

VERY PRELIMINARY

VERY PRELIMINARY

Impact Parameter Resolution

- Can measure vertexing resolution from the known small "nanobeam" spot
 - Resolution driven by DEPFET pixel detector

SuperKEKB Beam Spot Size

- Measurement for all three dimensions
- Nanobeam scheme works as intended

D0 Lifetime Measurement

BB Pairs in First Data

- Decompose measured R2 distribution into BB and continuum components
- Using off-resonance data to model continuum distribution
 - some discrepancies in continuum MC likely due to incomplete machine background modeling
- Many $B\overline{B}$ pairs in first data set
 - We are stably operating on on the Y(4s) resonance

Reconstructed B decays

- $B \rightarrow D(*)h$ exclusive (h= π, ρ)
 - Various D decays
- ~300 selected event candidates in first 410pb⁻¹

42

Summary

- The TOP detector is a novel particle identification system for the Belle II barrel region
 - Strong requirements on sensors, readout electronics, calibration
 - It actually works

- Belle II has successfully started its first physics run period earlier this year
 - Relatively slow luminosity rampup gives us some time to really understand the fine details of the detector

PMT Degradation and Replacement Plans QE degradation (15th MC + 4 MHz/PMT)

TOP Event Timing for Trigger

- Precise event time is important for SVD readout: 25ns frame spacing, can afford only few ns of jitter
 - ECAL and drift chamber trigger timing but resolution is ~tens of ns
- Why not use TOP information for L1 T₀ estimate?
- Complicated photon timing structure due to reflections etc.
 - Live likehood analysis of streamed TOP hit timings (no geometric info available)
 - No tracking information on trigger level
 - Estimated to produce <3ns T0 resolution (eventually)
 - FPGA Infrastructure is set up, successfully used TOP timing for cosmics trigger

PXD: Inner Vertexing with DEPFET Pixels

- DEPFET: internal charge to current amplification P source
 - Very good S/N for thin sensors
 - Relatively low power (no cooling in active area)
 - Rolling shutter readout (20us frame time)
- Sensors thinned to 75um
 - <0.25% X_∩ per layer
- Two layers (r=14mm, 22mm)
 - Down to 50*55um pixels
 - 40 sensors total, 7.7Mpixel

amplifier

PXD: Current Installation

- After technical troubles in module production and assembly: only inner layer installed
 - +2 ladders on outer layer
 - 10/20 sensors (3.8Mpixel)
- Restarted production of all sensor types to provide modules for a complete replacement of the currently installed PXD by 2021
- Two full sensors currently not operational
 - 1.3.2: known B-grade, masked
 - 1.8.1: masked since QCS quench and uncontrolled beam loss

PXD: Readout

- PXD is virtually noise free, but rather long integration time (20us, two full accelerator revolutions)
- ONSEN system reads out full PXD on each trigger and keeps data in local buffer
 - HLT reconstruction identifies regions of interest on PXD surface, ONSEN only transfers relevant parts of PXD hitmaps to EB2/storage
 - DATCON: FPGA based tracking to generate RoIs directly from SVD raw data
- Still PXD accounts for ~75% of total Belle II raw data size

SVD: Silicon Vertex Detector

- Four layers of double-sided strip detectors
 - r=39mm to r=140mm
 - Lampshade geometry
- 224k strips
 - 50-75um pitch tangential
 - 160-240um pitch axial
- Read out by APV25 ASICs
 - Adapted from CMS
 - 50ns shaping,40MHz sampling
 - Partially thinned to 100um

SVD: Production

- Readout chips of central sensors bonded to "Origami" Kapton flex
 - Folded around sensors
- Ladders assembled all around the world:
 - Layer 3: Uni Melbourne, Australia
 - Layer 4: TIFR, India
 - Layer 5: HEPHY, Austria
 - Layer 6: Kavli-IPMU, Japan
- Final assembly into half shells and full vertexing system at KEK

VXD Assembled and Installed

- Four layers of double-sided strip detectors
 - r=39mm to r=140mm
 - Lampshade geometry
- 224k strips
 - 50-75um pitch tangential
 - 160-240um pitch axial
- Read out by APV25 ASICs
 - Adapted from CMS
 - 40MHz signal sampling
 - Partially thinned to 100um

Endcap Particle ID: ARICH

- Aerogel ring imaging Cherenkov detector
 - Double aerogel layer for focusing
- Very large sensor area: pixelated, single photon sensitive
 - instrumented with HAPDs (Hamamatsu)

Radial Asymmetry

Feature Extraction in ECL

- 128 sample template fit in ECL frontend FPGA
 - Extracting hit amplitude and timing

Feature Extraction in ECL

• Achieves <10ns timing resolution with 500ns sample distance

