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The random–field Ising model (RFIM)

Generalization of the standard ferromagnetic Ising model, J > 0 and Sx ± 1 :

H(RFIM) = −J
∑
⟨x,y⟩

SxSy −
∑

x
hxSx

with {hx} a random variable.

Equivalent to the experimentally relevant Diluted AntiFerromagnetic model in
a Field (Fishman and Aharony, 1979).

H(DAFF) = −J
∑
⟨x,y⟩

SxSyηxηy − H0
∑

x
(−1)xSx

with ηx a dilution variable and H0 an external homogeneous field.



The random–field Ising model (RFIM)

H(RFIM) = −J
∑
⟨x,y⟩

SxSy −
∑

x
hxSx

▶ {hx} independent random magnetic fields with zero mean and
dispersion σ.

▶ ferromagnetic/paramagnetic transition from small σ to large
σ.

▶ Ferromagnetic state is stable only for D > 2 (Imry & Ma,
1975).

Relevant dimensions : 3 ≤ D ≤ 6

with D = 6 the upper critical dimension for RFIM.



RG fixed point & phase diagram
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Mean Field for the RFIM

▶ MF Hamiltonian, after averaging the random fields in a
replicated system :

HMF =

∫
dDr

∑
a

(
(∇Sa(r))2 + tS2

a(r) + λS4
a(r)

)
− σ

∑
a,b

Sa(r)Sb(r)


▶ Propagator : (k2δa,b − σMa,b)−1 → δa,b

k2 − σMa,b
k2(k2−nσ)

▶ Then, two propagators :
▶ G(dis)

xy = ⟨SxSy⟩ and ≃ 1/k4.
▶ G(con)

xy = ⟨SxSy⟩ − ⟨Sx⟩⟨Sy⟩ and ≃ 1/k2.
▶ Bellow the upper critical dimension, each propagator will have

an anomalous dimension.



Mean Field for the RFIM

▶ The IM bellow the upper critical dimension is characterized by
two quantities, ν and the anomalous dimension η of the
(single) propagator.

▶ The RFIM bellow the upper critical dimension is characterized
by three quantities, ν and the anomalous dimensions η and η̄
of the two propagators.

▶ Dimensional reduction : ϵ = 6 − D Perturbative computation
gives, for all critical exponents and at each order

αRFIM,D = αIM,D−2 (1)

(Aharony, Imry, and Ma, 1976 and Young, 1977)
▶ Then η = η̄



Dimensional reduction versus sharp reality

▶ The dimensional reduction is explained by a hidden
supersymmetry in the Random Field Ising model (Parisi &
Sourlas, 1979)
Supersymmetry → Dimensional reduction

▶ Failure: The 3D RFIM orders while the 1D Ising model (IM)
does not!

▶ Then η ̸= η̄ → 3 independent critical exponents !!!

▶ 2 or 3 independent exponents ? η̄ = 2η (Schwartz et al.,
1985)



Dimensional reduction versus sharp reality
▶ Many reason have been put forward to explain breaking of

dimensional reduction :
▶ Non perturbative effect due to bound states in replica theory
▶ the breakdown of perturbation theory is due to a large number

local minimum in the energy landscape.
▶ Existences of large scale excitations

▶ different scenarios are possible :
1. Nonperturbative effects could destroy supersymmetry at a

finite order in the ϵ expansion or, even worse, at D = 6.
2. Violations of supersymmetry might be exponentially small

∼ exp(−A/ϵ).
3. Supersymmetry has been suggested to be exact but only for

D > Dint ≈ 5.1 (Tarjus et al.). For D < Dint the
supersymmetric fixed point becomes unstable with respect to
non-supersymmetric perturbations.

Dc ≃ 5 also appeared in recent works by S. Hikami (2018),
Kaviraj, Rychkov and Trevisani (2020)



Recent numerical works

Large scale simulations in D = 3, 4 and 5 with the goal of :

1. Examine universality in terms of different distributions of the random
fields {hx}.

2. Check the puzzle with the number of independent exponents.

3. Revisit dimensional reduction RFIM(D) → IM(D−2) at higher dimensions
to check the above mentioned scenarios.



Simulation

▶ Optimization methods: Graph theoretical algorithms that calculate exact
ground states of the model in polynomial time, avoiding equilibration
problems & simulating much larger system sizes: LD

max = {1923, 604, 285}.

▶ We consider a D dimensional hyper-cubic lattice with periodic boundary
conditions and energy units J = 1.

▶ hx are independent quenched random fields with a distribution P(h, σ).
We considered the following distributions, with σ as the single parameter :

1. Gaussian distribution : P(G)(hx, σ) =
1√

2πσ2 e−
(hx)2
2σ2

2. Poissonian distribution : P(P)(hx, σ) =
1

2|σ|e
−|hx|/σ

(test of universality !!!!)

▶ Extensive averaging over 10 million samples.



Observables
▶ Binder cumulant: m = 1

LD
∑

x Sx → U4 = ⟨m4⟩
⟨m2⟩2

▶ Disconnected and connected correlation lenght :

G(dis)
xy = ⟨SxSy⟩ ∼ 1

rD−4+η̄ ; G(con)
xy = ∂⟨Sx⟩

∂hy
∼ 1

rD−2+η

ξ# =
1

2 sin(π/L)

√√√√ χ#
(0,··· )

χ#
(2π/L,0,··· )

− 1 . (2)

with χ#

k⃗ the Fourrier transform of G#
xy

▶ Dimensionless quantities : U4(L, σ); ξ(dis)(L, σ)/L and ξ(con)(L, σ)/L.

▶ For a dimensionless quantity, we have, close to a critical point

g(L, σ) = Fg(L1/ν(σ − σc)) +O(L−ω) · · · (3)

with Fg(x) some universal function and ω the leading irrelevant correction.



Finite–size scaling using quotients

▶ We solve numerically g(L, σc(L)) = g(2L, σc(L)).

▶ At the lowest order σc(L) = σc + αL−ω−1/ν → ω + 1/ν

▶ We measure at the points σc(L).

g(L, σc(L)) = Fg(L1/ναL−ω−1/ν)+O(L−ω) · · · = g(σc)+βL−ω + · · · → ω

▶ We fit simultaneously several data sets: 2 field distributions and up to 3
crossing points: Z(x), where Z = G, or P and x = (con), (dis), or U4.

▶ Estimation of ω using joint fits for several magnitudes.

▶ Individual extrapolation of all other observables fixing ω.



Finite–size scaling using quotients
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 L = 6       L = 12
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4D Gaussian RFIM

with σc(6) = 4.17091(22) ; σc(16) = 4.17813(7) ; σc(26) =
4.17790(5).

Not monotonic !!!!



Non-monotonic behavior (4D RFIM)
Possible explanation of previously reported universality violations
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Higher-order corrections are necessary: gL = g∗ + a1L−ω + a2L−2ω + · · ·



Universality in the 4D RFIM
ω = 1.30(9)
ξ(con)/L = 0.6584(8)
η = 0.1930(13) ̸= 0.25 = η(2D IM)
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Universality in the 5D RFIM
ω = 0.66(15) ∼ 0.82966(9) = ω(3D IM)

ξ(con)/L = 0.4901(55)
η = 0.055(15) ∼ 0.036298(2) = η(3D IM)
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A summary of results for the RFIM at 3 ≤ D < 6

Within our numerical resolution: 5D RFIM → 3D IM



Supersymmetry ?
N.G. Fytas, V. Martín-Mayor, G. Parisi, M. Picco, and N. Sourlas, PRL 122, 240603 (2019).

▶ So far, we have checked about dimensional reduction which
seems to exists between D = 5 RFIM and D = 3 IM.

▶ What about supersymmetry predicted by Parisi and Sourlas
(1979) ? Remember that dimensional reduction is a
consequence of supersymmetry, not the other way around !!!

▶ We consider measurements in 5D with the geometry :

Lx = Ly = Lz = L ; Lt = Lu = RL ; R ≥ 1 (4)

and look for the limit R → ∞
▶ The correction limit is to take R → ∞ before the

thermodynamic limit, L → ∞.

O(D, 2) → O(2, 2).



Supersymmetry ?

▶ We consider the disconnected correlation function
G(dis)
(x1,u);(x2,u) = ⟨Sx1,uSx2,u⟩, with x1 or x2 the 3 dimensional

part and u the 2 dimensional part.
▶ Supersymmetry prediction

G(dis)
(x1,u);(x2,u) = ZG3d Ising

x1;x2 (5)

with Z a position-independent normalization constant.
▶ In practice, we first define a Fourier transform as :

χ
(dis)
k =

1
LD−2

∑
x1,x2

eik·(x1−x2) G(dis)
(x1,u);(x2,u) (6)

Note that the average over the disorder corresponds to an
average over u.



Supersymmetry ?

▶ Compute a correlation length (Z disappeared !!!)

ξ(dis) =
1

2 sin(π/L)

√√√√√ χ
(dis)
(0,0,0)

χ
(dis)
(2π/L,0,0)

− 1 . (7)

▶ Similar argument also for the Binder ratio :

U4(L) =
⟨m4u⟩

⟨m2u⟩
2 . (8)

Again, the average over the disorder corresponds to an
average over u.



Supersymmetry ?
▶ We can also make a direct check of the supersymmetry. It

predicts the following Ward identity

G(con)
r = −Z2

d
dr2 G(dis)

r , (9)

which relates the connected and disconnected correlation
functions, with r2 = (u1 − u2)2.

▶ As simple integration gives∫ ∞

0
dρ2 G(con)

x1,0,0;x2,ρ,0 ≃ Z2 G(dis)
x1,0,0;x2,0,0 (10)

▶ We can then compare the correlation length obtained from
the integrated connected correlation function with the
correlation length from the disconnected correlation function
(which is related to the D − 2 correlation length !).



Check of Supersymmetry (1)

ξ(dis)(L,R)/L vs. L−ω for various R values, as computed in the D = 5 RFIM
with 3D IM ω.
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Check of Supersymmetry (2)

U4(L,R) vs. L−ω for various R values, as computed in the D = 5 RFIM.
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Check of Supersymmetry (3)

ξ
(con)
σ−η (L,R)/L vs. L−ω for various R values, as computed in the D = 5 RFIM.
ξ
(con)
σ−η (L,R)/L ≃ connected correlation length.
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Check of Supersymmetry (4)

4D RFIM → 2D IM ?

NO !!
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Conclusions

▶ Universality in the RFIM in finite D.

▶ High-accuracy estimates for various universal ratios and the
whole set of critical exponents and all relevant dimensions
D = {4, 5} with 3 independent exponents for D = 4.

▶ Our estimates for the critical exponents indicate that
dimensional reduction seems to be at play at, or close to,
D = 5.

▶ The checked predictions of supersymmetry are satisfied
between the D = 5 RFIM and the D = 3 Ising model with a
good precision.


