2019/10/18 PhD defense

Topics in 21-cm cosmology:

Foreground models and their subtraction, map reconstruction for wide field of view interferometers and PAON-4 data analysis

Qizhi HUANG

Supervisors: Prof. Réza ANSARI Prof. Xuelei CHEN

Outlines

• Introduction

• Summary

Introduction

- Dark Energy
- Baryon Acoustic Oscillation (BAO)
- 21cm Intensity Mapping
- 21cm line
- Dark Ages
- High resolution foreground model
- 21cm extraction by filtering
- Lunar orbit interferometer imaging
- PAON-4 data analysis
- Summary

Dark Energy

- Accelerating expansion of the Universe
 - Type la supernovae (Nobel Prize in Physics 2011)
 - Driven by dark energy (~70%)
- Dark energy fluid
 - Equation of state <= H(z) or D_A(z) <= BAO

$$H(z) = H_0 \sqrt{\Omega_{\rm m}(1+z)^3 + \Omega_{\rm r}(1+z)^4 + \Omega_k(1+z)^2 + \Omega_{\rm DE}e^{3\int_0^z \frac{1+w(z')}{1+z'}}}$$

Cosmological Parameter	TT,TE,EE+lowE+lensing+BAO 68% limits		
$H_0 [\mathrm{kms^{-1}Mpc^{-1}}]$	67.66 ± 0.42		
Ω_{Λ}	0.6889 ± 0.0056		
$\Omega_{\rm m}$	0.3111 ± 0.0056		
$\Omega_{\rm b}h^2$	0.02242 ± 0.00014		
Age [Gyr]	13.787 ± 0.020		
Planck Collabo	ration et al. 2019)		

Baryon Acoustic Oscillation (BAO)

- Photon-baryon flow oscillation, primordial fluctuation:
 - higher density to lower density
- Standard ruler, 105 Mpc/h
- Obtain D_A(z) or H(z) => universe evolution => dark energy

21cm intensity mapping

- Optical:
 - SDSS, Boss/eBoss, DESI
 - Individual galaxy, long time, only low redshift
- Radio using 21cm:
 - Measure individual galaxy, long time, huge collecting area
 - 21cm intensity mapping:
 - Much faster! Wide FoV; broadband

6

21cm signal

- Transition between two hyperfine levels of HI atom
 - proton and electron's spin directions
 - Energy difference => 21cm wavelength

Experiments

Dark Ages

- Highly homogeneous and isotropic
 - most is HI, no luminous star
- Use 21cm line to detect: Ts < TCMB: absorption
- High redshift, low frequency, ionosphere => lunar satellites

- Introduction
- High resolution foreground model

- 21cm extraction by filtering
- Lunar orbit interferometer imaging
- PAON-4 data analysis
- Summary

21cm experiments and foreground models

- 21cm experiments
 - EoR: LOFAR, MWA, PAPER, 21CMA, HERA
 - mid-frequency, large scale structure, dark energy: PAON-4, Tianlai, CHIME, BINGO
- Foreground models
 - High resolution foreground model is needed
 - GSM 2008 and 2016: low resol, 1 \degree
 - T-RECS: small sky coverage
 - CORA: spectral index---GSM; random sources
 - Our model: spectral index---from observational maps; source distribution---Rayleigh-Lévy random walk

Some 21cm experiments

- Radio source data
 - NVSS (1.4 GHz) + SUMSS (843 MHz)
 - Similar angular resolution: ~45"
 - Similar sensitivity: ~mJy
 - Combination is full sky

• Diffuse emission data

Bright source model

- Spectral index
 - 10 degree overlap (-40° to -30°)
 - 7515 sources
 - Spectral index: 0.8157 \pm 0.3

- Uniform surface density
 - Combined catalogue at 1.4 GHz: ~30 / deg²

- Complete sample
 - Source count
 - NVSS (1.4GHz): ≥ 2.7 mJy => 15 mJy
 - SUMSS (843MHz): ≥ 12 mJy => 22 mJy

Fig. 3.5 Source count below 1 Jy. The curves of NVSS and SUMSS drop quickly below $S_{\text{NVSS}} = 2.7 \text{ mJy}$ and $S_{\text{SUMSS}} = 12 \text{ mJy}$ respectively, because the surveys become incomplete.

Faint source model

- Rayleigh-Lévy random walk
 - probability distribution: tell you how the sources apart

$$P(\Theta > \theta) = \begin{cases} \left(\frac{\theta}{\theta_0}\right)^{-\gamma}, & \theta \ge \theta_0\\ 1, & \theta < \theta_0 \end{cases}$$

• From two-point correlation function of source survey:

$$heta_0=6'$$
 $\gamma=0.8$ (Overzier et al. 2003)

- Need differential source count n(S)
 - Tell you how many sources in a flux density (interval)

Galactic free-free emission model

- ~1% of total foreground, but still important
- Well measured at higher frequency
 - At higher freq (>10 GHz), the diffuse warm ionized gas is optical thin
 - Galactic Hα trace Galactic free-free
- Spectral index
 - Observation at higher frequency: -2.13 to -2.17
 - Fitted formula $\beta_{\rm ff} = -2 \left[10.48 + 1.5 \ln\left(\frac{T_e}{8000 \rm K}\right) \ln\left(\frac{v}{\rm GHz}\right)\right]^{-1}$
- Extracted map
 - Combine Planck 2015 data with WMAP-9yr data (Ade et al. 2016)

15

Galactic synchrotron emission model

- Dominant component, ~70% of the total foreground
- Extract Galactic synchrotron from observational maps
 - Subtract the CMB: average 2.7255 K and its anisotropy
 - Subtract radio sources: radio source model above
 - Subtract Galactic free-free emission: model above
- Spectral index $N(\mu = \bar{\beta}(\nu), \sigma^2 = 0.024 \left(\frac{\nu}{408 \text{ MHz}}\right)^2)$

Total foreground

• Compare with CORA

17

Brief summary

- High resolution foreground model
 - Radio source model:
 - bright sources: NVSS+SUMSS, completeness, same surface density, spectral index
 - faint source: differential count, Rayleigh-Levy random walk
 - Free-free emission model: spectral index
 - Synchrotron emission model: preprocess 8 maps, spectral index
 - Compare with GSM, CORA

- Introduction
- High resolution foreground model
- 21cm extraction by filtering
 - Simulation data: 21cm, foreground with beam, noise
 - Design cascade of two Wiener filters
 - Test our method
 - Inaccurate beam
- Lunar orbit interferometer imaging
- PAON-4 data analysis
- Summary

Difficult to extract

• 21cm signal is very weak: ~0.1 mK at z~1

$$T_b = 0.29 \frac{\Omega_{\rm H\,I}}{10^{-3}} \left(\frac{\Omega_m + (1+z)^{-3}\Omega_{\Lambda}}{0.37}\right)^{-\frac{1}{2}} \left(\frac{1+z}{1.8}\right)^{\frac{1}{2}} \rm{mK}$$

• Foreground contaminated: ~7000 mK at z~1

- Frequency dependent antenna beam
 - Leading to fluctuation in frequency direction
- Proposed methods
 - Polynomial fitting, PCA, SVD, ICA, ...

Simulated data

- 21cm signal
 - Bias follows dark matter <= CAMB

• Gaussian beam with D=100 m

- Foreground
 - Our foreground model

- White Gaussian noise
- 200 mK, 2000 mK

Our method: Cascade filters

- Make use of statistic properties
- First: 1D filter in frequency domain
 - Remove frequency-smooth foreground, as 21cm signal and noise are fairly random along line of sights.
- Second: 2D filter in angular domain
 - Remove noise from 21cm signal, as the receiver noise is uncorrelated in angular direction, while the 21-cm signals are correlated because it traces the large scale structure of the Universe.

Wiener filter design

- Wiener filter is an optimal filtering system minimizing the mean square error between the estimated random process and the desired process: $\langle (x \hat{x})(x^{T} \hat{x}^{T}) \rangle$
- Filtering in frequency domain
 - 1D Wiener filter designed to remove the foreground:

$$\mathbf{W}_{\mathbf{v}}^{f} = \mathbf{F} \left[\mathbf{F} + \mathbf{S} + \mathbf{N} \right]^{-1}$$

The weight for each components

• Extract the 21cm + noise:

$$\mathbf{W}_{\mathbf{v}} = \mathbf{I} - \mathbf{W}_{\mathbf{v}}^f$$

- Filtering in angular domain
 - 2D Wiener filter designed to extract the 21cm signal

$$\hat{x} = \mathbf{W}y \equiv \mathbf{S}\mathbf{A}^{\mathrm{T}} \left[\mathbf{A}\mathbf{S}\mathbf{A}^{\mathrm{T}} + \mathbf{N}\right]^{-1} y$$

Filtered signal

• Filtering in frequency domain (1D)

• Filtering in angular domain (2D)

Effect of inaccurate beam model

25

Brief summary

- 21cm extraction by filtering
 - Signal data simulation
 - Design a cascade of two Wiener filters: in frequency then in angular
 - Test two noise level: 200 mK and 2000 mK
 - Try with two inaccurate beam models

- Introduction
- High resolution foreground model
- 21cm extraction by filtering
- Lunar orbit interferometer imaging
 - Hard to observe <30 MHz on the ground => on lunar orbit
 - Advantages and disadvantages
 - Our new imaging algorithm
 - Solve mirror symmetry problem
 - Solve imaging problem with full sky FoV, time-varying blockage, time-varying and noncoplanar baselines
- PAON-4 data analysis
- Summary

Poorly known below 30 MHz

- Reason
 - strong refraction and absorption by the ionosphere below 30 MHz
 - strong RFI (radio frequency interference)
- Ground observation
 - strong radio phenomena from solar system:
 - solar radio bursts , planetary radio activities
- Space mission
 - Proposed but not realized
 - earth orbit: SunRISE --- strong RFI
 - Sun-Earth L2 point: ALFA, FIRST, SURO-LC --- all-time observation, still RFI
 - IMP-6, RAE-1, RAE-2: the Moon can shield the RFI from the Earth

DSL (Discovering the Sky at Longest wavelength)

- Lunar orbit interferometer
 - First realized: Longjiang-1 and Longjiang-2, China, Chang'e-4
 - Also known as DSL pathfinder
- Advantages
 - Observe on far-side, shield RFI
 - Transfer data on near-side, don't need TDRSS
 - Short orbital period, use solar power
 - Interferometry, high resolution
- Disadvantages
 - All sky field of view, sphere
 - Mirror symmetry problem
 - Time-varying noncoplanar baselines
 - Time-varying blockage

No applicable imaging algorithm

• 3D FFT, W-Projection, W-Stacking

Our new imaging algorithm

- Start from visibility definition: $V_{ij} = \int A_{ij}(\vec{n}) T(\vec{n}) e^{-i\vec{k}\cdot\vec{r}_{ij}} d^2\vec{n}$
- Integral (continuous) => sum (discrete): $V_{ij}(t) = \sum_{n=1}^{pn} H(n,t)T(n)\Delta\Omega$
- Matrix formalism in pixel: $\mathbf{V} = \mathbf{H}\mathbf{T} + \mathbf{n}$
- Matrix formalism in spherical harmonic:

$$V_{ij}(t) = \sum_{l=0}^{l_{\max}} \sum_{m=-l}^{l} (-1)^m \mathcal{H}_{l,-m}(t) \mathcal{T}_{lm}$$

$$V_{ij}^*(t) = \sum_{l=0}^{l_{\max}} \sum_{m=-l}^{l} \mathcal{H}_{l,m}^*(t) \mathcal{T}_{lm}$$

$$\mathbf{V} = \mathcal{H} \mathcal{T} + \mathbf{n}$$

- Estimator
 - in pixel: $\hat{\mathbf{T}} = (\mathbf{H}^{\dagger} \mathbf{N}^{-1} \mathbf{H})^{-1} \mathbf{H}^{\dagger} \mathbf{N}^{-1} \mathbf{V} \equiv \mathbf{B}^{-1} \mathbf{V}$
 - in spherical harnomic: $\hat{\mathcal{T}} = (\mathcal{H}^{\dagger} \mathbf{N}^{-1} \mathcal{H})^{-1} \mathcal{H}^{\dagger} \mathbf{N}^{-1} \mathbf{V} \equiv \mathcal{B}^{-1} \mathbf{V}$

Pseudo-inverse through SVD

• Use SVD to compute B⁻¹:

$$\mathbf{B} = \mathbf{U} \Sigma \mathbf{W}^{\dagger} \quad \blacksquare \qquad \bar{\mathbf{B}}^{-1} = \left(\mathbf{U} \bar{\Sigma}^{-1} \mathbf{W}^{\dagger}\right)^{\dagger}$$

- Deal with very small singular values:
 - General method: absolute threshold, relative threshold to vmax
 - Singular matrix dependent
 - Experience (Jiao Zhang et al. 2016)
 - Automatic method: cumulation ratio

$$\frac{\sum_{i=1}^{N_{\rm thr}} \lambda_i}{\sum_{N_{\rm all}} \lambda_i} = 0.99$$

Baselines and Moon's blockage

- Orbit and baseline
 - Angle between orbital plane and Moon's equatorial plane is 30 $^\circ$
 - Precession amplitude and rate are large: 360 $^\circ~$ in 1.29 years
 - Orbital plane precision will produce 3D baselines.
- Blockage
 - Angular size:
 - h is the height to the lunar surface
 - Change with time $\theta_m \approx 2 \arcsin\left(\frac{R_m}{R_m+h}\right)$

Solution of mirror symmetry problem

2D

 100_{-400} -300 -200 -100 $0_{v/\lambda}$ 100 200 300

300

100

-200

o ∕/æ -100

- Orbit and baseline
 - Pitch 30 $^\circ~$: precess fast: 360 $^\circ~$ in 1.29 years
 - Large elliptic orbit: save energy
- All baselines on orbital plane
 - Symmetry images

2D baselines on orbital plane Only 2D baselines on orbital plane^{5.2} logn(K)

6.7

- Solve symmetry problem
 - Orbital plane precession, 3D baselines

Blockage effect

- Blockage angular size $\theta_m \approx 2 \arcsin\left(\frac{R_{\rm m}}{R_{\rm m}+h}\right)$
- Valid observation time

• Time-varying blocked sky

Baseline distribution effect

- Only long baselines, >6 km
 - For safety
 - Larger sidelobe
- Only short baselines, <0.5 km
 - More complete uv coverage
 - Lower resolution

Long baselines

 $\log_{10}(K)$

6.7

5.2

Short baselines

nonuniform

baselines

36

36

- Nonuniform distribution
 - 1/4 sphere
 - Short time observation

Distorted image---

Brief summary

- Lunar orbit interferometer imaging
 - <30 MHz, advantage
 - Whole sky FoV, symmetry problem => orbital plane precessio
 - Time-varying blockage, time-varying and noncoplanar baselines + whole sky FoV => no applicable imaging algorithm
 - Our imaging algorithm in spherical harnomic
 - Blockage effect, baseline distribution effect, sph harnomic v.s. pixel

- Introduction
- High resolution foreground model
- 21cm extraction by filtering
- Lunar orbit interferometer imaging
- PAON-4 data analysis
 - Surface fitting and RFI mitigation
 - System gain calibration
 - Pointing calibration
 - Phase calibration
 - Amplitude calibration
 - Map-making
- Summary

PAON-4

- Transit interferometer array
 - 4 dishes with D=5 m
 - Located at Nançay radio observatory
 - 1250—1500 MHz, 4096 bins -> freq resol 61 kHz ٠
 - Longest baseline: 12 m, 1.3 degree at 1.4 GHz
 - Total receiving area: 75 m²

Raw data

['2.2 ['A'N'] 2.0

Auto-correlation

1H, 1420.4 MHz

Data

['.º.8 ['...

Auto-correlation

Data

1H, 1400 MHz

- 4 dual polarization
- 36 visibilities
 - 8 auto
 - 6 H-cross •
 - 6 V-cross ٠
 - 16 HV-cross •

Before RFI mitigation: surface removal

- Methods
 - Uniform window filtering
 - Gaussian filtering
 - Median filtering
 - Minimum filtering

RFI mitigation

- SumThreshold
 - Works well on LOFAR and WSRT data
 - (Offringa et al. 2010)
 - Connected samples
 - 1, 2, 4, 8, 16 (experiential)
 - Thresholds

$$\geq \chi \cdot \mathbf{M} \cdot \boldsymbol{\sigma}$$

- X
 - 4, 3, 2.5, 2, 1.8
- Two rules
 - Replace, recompute

System gain calibration

• Temperature-dependent • From the laboratory measurement

$$V_a(t, \mathbf{v}) = G(t, \mathbf{v}) \cdot [I(t, \mathbf{v}) + N(t, \mathbf{v})]$$

= $g(t) g(\mathbf{v}) \cdot [I(t) I(\mathbf{v}) + n(t) n(\mathbf{v})]$

o'clock

Pointing calibration and Effective diameter

- Effective diameters: 4.22m, 4.11m, 4.23m, 4.36m
- Pointing offsets: 1.3° , 0.5° , 0.7° , 1.2°

Phase calibration

- Use bright source Cygnus A
 - Method 1: fit the visibility

• Phase closure checking

• Calibrated

Amplitude calibration

- Calibrate Cross-corr data
 - Use Cygnus A

• Data noise checking

(203)

$$2\sigma_{\mathbf{C}_{XY}}^2 = \sigma_{\mathbf{A}_X} \sigma_{\mathbf{A}_Y}$$

System temperature

- Assume a thermal noise
- For auto-correlation

$$T_{\rm sys}^i = \sigma_i \sqrt{\Delta t \cdot \Delta \nu}$$

- 114K、104K、125K、126K
- For cross-correlation

$$T_{\rm sys}^{ij} = \sigma_{ij} \sqrt{2\,\Delta t \cdot \Delta \nu}$$

- 107K, 120K, 116K, 108K, 118K, 127K
- The average system temperature: 120 K

Map-making

- PAON-4 scan
 - drift scan (transit)
 - 11 scans $\delta = +35.7^{\circ}$ to $+45.7^{\circ}$

Dataset	Dec.	Freq.	Begin	Duration
		[MHz]	(UTC)	(Sidereal time)
CygA17nov16	$+40.733^{\circ}$	1250-1500	13:30	24 h
CygA18nov16	+41.733°	1250-1500	14:00	24 h
CygA19nov16	+39.733°	1250-1500	14:45	24 h
CygA21nov16	+42.733°	1250-1500	10:00	24 h
CygA22nov16	+38.733°	1250-1500	10:30	24 h
CygA23nov16	+43.733°	1250-1500	11:00	24 h
CygA24nov16	+37.733°	1250-1500	11:30	24 h
CygA25nov16	+44.733°	1250-1500	12:00	24 h
CygA26nov16	+36.733°	1250-1500	12:30	24 h
CygA27nov16	+45.733°	1250-1500	13:00	24 h
CygA1dec16	+35.733°	1250-1500	13:30	24 h

- m-mode algorithm
 - (Zhang J et al. 2016)

Reconstructed PAON-4 map @ 1400MHz

Brief summary

- PAON-4 data analysis
 - RFI mitigation: surface fitting by minimum filter, SumThreshold
 - System gain calibration: 4V, g(t) and g(v) independent, stability
 - Pointing calibration and Deff: solve linear system of equations
 - Phase calibration: Cygnus, visibility directly, sin(phase)
 - Amplitude calibration:
 - Cross: Cygnus A
 Auto: our foreground+LAB, data noise relationship
 - Estimate system temperature
 - Map-making using m-mode algorithm

• Summary

My publications

- An Imaging algorithm for a lunar orbit interferometer array
 Qizhi Huang et al. 2018. Published in AJ
- Extracting 21cm signal by frequency and angular filtering
 Qizhi Huang et al. 2018. Published in RAA
- A high-resolution self-consistent whole sky foreground model **Qizhi Huang** et al. 2019. Published in Sci.China Phys.Mech.Astron.
- Design, operation and performance of the PAON4 prototype transit interferometer

Réza Ansari et al. (I am a co-author) 2019. Submitted to MNRAS

Need to be improved

- High resolution foreground model
 - More radio source data from different surveys at different frequencies
 - High resolution diffuse model
- 21cm extraction by filtering
 - Try more different methods
 - Consider noise correlation
- Lunar orbit interferometer imaging
 - Polarization
 - Realistic beam pattern
 - Different orbits of satellites
- PAON-4 data analysis
 - More data to reconstruct larger sky map
 - More data to reach higher sensitivity
 - More precise calibration method

Faint source model

- Rayleigh-Lévy random walk
 - probability distribution

$$P(\Theta > \theta) = \begin{cases} \left(\frac{\theta}{\theta_0}\right)^{-\gamma}, & \theta \ge \theta_0\\ 1, & \theta < \theta_0 \end{cases}$$

• From two-point correlation function of source survey:

 $heta_0=6'$ $\gamma=0.8$ (Overzier et al. 2003)

- Detail steps
 - (1) First step: arbitrary position
 - (2) Choose random (n, θ), and uniform random u, if u>P, place
 - (3) Repeat (2) until all sources are placed
 - (4) Set flux densities to each sources, according to the differential count n(S)

Normalized differential count n(S)

Definition

$$S^{5/2}n(S) \equiv \frac{1}{4\pi} \int_0^\infty S^{5/2} \eta(S, z) \mathrm{d}z$$

where $\eta(S,z)$ is the number of radio sources per unit flux densitive per unit redshift $\eta(S,z) = \rho(L,z)A\frac{dL}{dS}\frac{dr}{dz} = \frac{cA^2(1+z)^{1+\alpha}\rho(L,z)}{H_0\sqrt{\Omega_{\Lambda} + \Omega_m(1+z)^3}}$

• Star-forming galaxy

$$\rho_m(L) = C \left[\frac{L}{L_*} \right]^{1-a} \exp\left\{ -\frac{1}{2} \left[\frac{\log_{10} \left(1 + \frac{L}{L_*} \right)}{\sigma} \right]^2 \right\} \qquad \text{lo}$$

• Radio loud AGN

$$\log_{10}(\rho_m) = Y - \frac{3}{2}\log_{10}(L) - \sqrt{B^2 + \left[\frac{\log_{10}(L) - X}{W}\right]^2}$$

Confusion limit

- Radio sources with flux densities below the confusion limit are undetected.
- Our formula

$$S_{c} = \begin{cases} 0.05 \,\mathrm{mJy} \cdot Q^{3.51} \left(\frac{\theta_{0}}{\mathrm{arcmin}}\right)^{3.51} \left(\frac{\nu}{1.4 \,\mathrm{GHz}}\right)^{-2\alpha} , & \theta_{0} \le 0.25 \,\mathrm{arcmin} \\ 0.07 \,\mathrm{mJy} \cdot Q^{1.53} \left(\frac{\theta_{0}}{\mathrm{arcmin}}\right)^{1.53} \left(\frac{\nu}{1.4 \,\mathrm{GHz}}\right)^{-2\alpha} , & 0.25 < \theta_{0} \le 1.13 \,\mathrm{arcmin} \\ 0.01 \,\mathrm{mJy} \cdot Q^{2.56} \left(\frac{\theta_{0}}{\mathrm{arcmin}}\right)^{2.56} \left(\frac{\nu}{1.4 \,\mathrm{GHz}}\right)^{-2\alpha} , & 1.13 < \theta_{0} \le 7.18 \,\mathrm{arcmin} \\ 0.3 \,\mathrm{mJy} \cdot Q^{1.63} \left(\frac{\theta_{0}}{\mathrm{arcmin}}\right)^{1.63} \left(\frac{\nu}{1.4 \,\mathrm{GHz}}\right)^{-2\alpha} , & 7.18 < \theta_{0} \le 30 \,\mathrm{arcmin} \\ 3 \,\mathrm{mJy} \cdot Q^{1.18} \left(\frac{\theta_{0}}{\mathrm{arcmin}}\right)^{1.18} \left(\frac{\nu}{1.4 \,\mathrm{GHz}}\right)^{-2\alpha} , & \theta_{0} > 30 \,\mathrm{arcmin} \end{cases}$$

$$N(S_{\rm B}) = \int_{\Omega_{\rm B}} \frac{n\left(\frac{S_{\rm B}}{B(\theta,\phi)}\right)}{B(\theta,\phi)} d\Omega$$

$$\sigma_{\rm c}^2 = \int_0^{S_{\rm c}} S_{\rm B}^2 N(S_{\rm B}) dS_{\rm B}$$

$$\frac{10^3 \frac{1}{10^3} \frac{1}{10^3}$$

merential count n(S

- Test our confusion limit formula
 - ASKAP EMU survey, 1.3 GHz, 10 arcsec, Sc=5 μJy our: 4.95 μJy
 - MWA, 512 antenna tiles, longest baseline 5 km, 300 MHz, Sc=2.3 mJy our: 2.6 mJy

Total foreground

• Compare with GSM

• Compare with CORA

Proposed 21cm extraction methods

Simulated 21cm signal

- Cube box with 200³ voxels
 - Center redshift: 0.7755

 $D_A = 1068.95 \,\mathrm{Mpc} \, h^{-1}$

• Frequency resolution: 0.1 MHz

$$\Delta D_c = 0.43 \,\mathrm{Mpc} \,h^{-1}$$

- Uniform voxel size: $\Delta heta = \Delta D_c/D_A = 0.023^\circ$
- Nonlinear power spectrum

of dark matter from CAMB

- 21cm signal box
 - Gaussian random field

$$\delta(\vec{k}) = \sqrt{\frac{V}{2}P(k)} \left(a_k + ib_k\right)$$
$$\delta(\vec{x}) = \frac{1}{V}\sum \delta(\vec{k}) e^{i\vec{k}\cdot\vec{x}}$$

 21cm temperature $\delta T_{21}(\vec{x}) = b_{\rm HI} \bar{T}_{21} \delta(\vec{x})$ $\Omega_{\rm HI} = 6.6 \times 10^{-4}$ $b_{\rm HI} = 0.70$ In 21cm @ 800MH 0.6 0.4 simulated degree **2**1cm signal at 800 MHz -0.2 59 -1 [degree]

China's Chang'e-4

- First soft landing on the far-side of the Moon (01/2019)
- Tracking and data relay satellite system (TDRSS), Queqiao
- Lunar orbit satellites:
 - Longjiang-1 (lost) and Longjiang-2 (05/2018)
 - Original objective: form a satellite interferometer
 - Whole sky spectrum, single satellite imaging

RFI mitigation

- Proposed methods
 - Component decomposition methods
 Connected samples
 - PCA, SVD: good if RFI repeated
 - But not good for stochastic RFI ٠
 - Threshold methods
 - CUMSUM, VarThreshold ٠
 - SumThreshold •
 - For LOFAR and WSRT data
 - SumThreshold performs the best ٠ (Offringa et al. 2010)

- SumThreshold
 - - 1, 2, 4, 8, 16 (experiential)
 - Thresholds $\geq \chi \cdot \mathbf{M} \cdot \boldsymbol{\sigma}$
 - 4, 3, 2.5, 2, 1.8
 - Two rules
 - Replace, recompute

Pointing calibration and Effective diameter

- Use cross-correlation data
- Assume Gaussian beam
- Effective diameter

$$\frac{1}{\sigma_{ij}^2} = \frac{1}{2} \left(\frac{1}{\sigma_i^2} + \frac{1}{\sigma_j^2} \right) \Rightarrow D_{ij}^2 = \frac{D_i^2 + D_j^2}{2}$$

• Pointing

$$\theta_{ij} = \theta_i \left(\frac{D_i^2}{D_i^2 + D_j^2} \right) + \theta_j \left(\frac{D_j^2}{D_i^2 + D_j^2} \right)$$

• Not use auto-corr data

Amplitude calibration

Summary

High resolution foreground model

- Radio source model:
 - bright sources: NVSS+SUMSS, completeness, same surface density, spectral index
 - faint source: differential count, Rayleigh-Levy random walk
 - formula of comfusion limit: compare with achieved results
- Free-free emission model: spectral index
- Synchrotron emission model: preprocess 8 maps, spectral index
- Compare with GSM, CORA

21cm extraction by filtering

- 21cm signal simulation
- Design a cascade of two Wiener filters: in frequency then in angular
- Test two noise level: 200 mK and 2000 mK
- Try with two inaccurate beam models

Lunar orbit interferometer imaging

- <30 MHz, advantage
- Whole sky FoV, symmetry problem => orbital plane precessio
- Time-varying blockage, time-varying and noncoplanar baselines + whole sky FoV => no applicable imaging algorithm
- Our imaging algorithm in spherical harnomic
- Blockage effect, baseline distribution effect, sph harnomic v.s. pixel

• PAON-4 data analysis

- RFI mitigation: surface fitting by minimum filter, SumThreshold
- System gain calibration: 4V, g(t) and g(v) independent, stability
- Pointing calibration and Deff: solve linear system of equations
- Phase calibration: Cygnus, visibility directly, sin(phase)
- Amplitude calibration:
 - Cross: Cygnus A
 Auto: our foreground+LAB, data noise relationship
- Estimate system temperature
- Map-making using m-mode algorithm

Topics in 21-cm cosmology:

Foreground models and their subtraction, map reconstruction for wide field of view interferometers and PAON-4 data analysis

Qizhi HUANG

Supervisors: Prof. Réza ANSARI Prof. Xuelei CHEN