

Vector Boson Scattering at the LHC

Iro Koletsou

Laboratoire de Physique des Particules d'Annecy

Université Savoie Mont Blanc

Séminaire IJCLab, Orsay

Overview

- The Vector Boson Scattering
 - Theoretical motivation
 - Experimental and theoretical challenges
- ATLAS and CMS results and interpretation
- Plans for the future
 - Interaction with theorists
 - Experimental improvement of the analyses
 - Plans with respect to the LHC timeline

The Standard Model and its limits

- A long history of successes
- A perfect completeness with the Higgs boson discovery
- Accepted to be valid up to certain, high, energy scale Λ

- Nevertheless, there is no doubt that there is something to discover beyond the SM:
 ✓ Neutrino mass and matter/antimatter asymmetry are only a few examples
- What kind of new physics is that introduces those deviances from the SM?
- How can this new physics be observed and measured?

The Large Hadron Collider

4tr 25m 25m Vice calorimeters Vice calorimeters Vice calorimeters Vice calorimeters Vice calorimeters Selendid magnet Selendid magnet Calorimeters C

A Toroidal LHC ApparatuS

LHC: a proton-proton collider (CERN)
✓ 13 TeV center-of-mass-energy since 2015
✓ 40 M collisions every second

The Large Hadron Collider

July 2012 :

Higgs boson discovery

End of 2016 :

3 times higher integrated luminosity

End of 2018 :

14 times higher integrated luminosity

With this high luminosity:

- Explore the Higgs sector
- Improve the precision on already observed processes
- Look for never observed, rare processes:

✓ Predicted by the SM
 ✓ Only existing as part of new physics

With this high luminosity:

- Explore the Higgs sector
- ✓ only 200 évènements Higgs→γγ in 2012

 \checkmark less than 10 to 4 leptons !

With this high luminosity:

- Explore the Higgs sector
- ✓ only 200 évènements Higgs→γγ in 2012
- ✓ less than 10 to 4 leptons !
- Now we are able to separately study different production modes and are completing the Higgs couplings landscape

With this high luminosity:

- Explore the Higgs sector
- Improve the precision on already observed processes
- Look for never observed, rare processes:

Predicted by the SM
 Only existing as part of new physics

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2019

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ \sqrt{s} = 8, 13 TeV

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	-1]	Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $G_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ e, \mu \\ 2 \ \gamma \end{array}$ multi-channe $0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4 j$ $-$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $2 J$ $\geq 1 b, \geq 1 J/2$ $\geq 2 b, \geq 3 j$	Yes 2j Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	М _D Ms Mth Mth Mth G _{KK} mass G _{KK} mass G _{KK} mass KK mass KK mass	2.3 TeV 1.6 TeV 1.8 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 3.8 TeV		1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{SSM}\; W' \to \tau\nu \\ \mathrm{HVT}\; V' \to WZ \to qqqq \; \mathrm{model} \\ \mathrm{HVT}\; V' \to WH/ZH \; \mathrm{model} \; \mathrm{B} \\ \mathrm{LRSM}\; W_R \to tb \\ \mathrm{LRSM}\; W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \end{array}$ $\begin{array}{c} 1 \ e, \mu \\ 0 \ e, \mu \end{array}$ multi-channe multi-channe 2 $\mu \end{array}$	_ 2 b ≥ 1 b, ≥ 1J/2 _ 2 J I I I I J	_ _ Yes Yes _ _	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass W _R mass W _R mass	2.42 TeV 2.1 TeV 3.0 T 3 3 2.93 T 3.25	5.1 TeV 6.0 TeV 3.7 TeV 6.6 TeV eV i TeV 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5$ TeV, $g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	_ Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV	1	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
MD	Axial-vector mediator (Dirac DM Colored scalar mediator (Dirac I $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac DM) 0 <i>e</i> , μ DM) 0 <i>e</i> , μ 0 <i>e</i> , μ) 0-1 <i>e</i> , μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 0\mbox{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M _* m _{\$p\$}	1.55 TeV 1.67 TeV 700 GeV 3.	4 TeV	$\begin{array}{l} g_{q} = 0.25, \ g_{\chi} = 1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g = 1.0, \ m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass	1.4 TeV 1.56 TeV 1.03 TeV 970 GeV		$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ\; TT \rightarrow Ht/Zt/Wb + X \\ VLQ\; BB \rightarrow Wt/Zb + X \\ VLQ\; T_{5/3}\; T_{5/3} \mid T_{5/3} \rightarrow Wt + X \\ VLQ\; Y \rightarrow Wb + X \\ VLQ\; B \rightarrow Hb + X \\ VLQ\; QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe $2(SS)/\geq 3 e,\mu$ $1 e, \mu$ $0 e,\mu, 2 \gamma$ $1 e, \mu$	$ \begin{array}{l} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass	1.37 TeV 1.34 TeV 1.64 TeV 1.85 TeV 1.21 TeV 690 GeV		$\begin{array}{l} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -	- - - -	139 36.7 36.1 20.3 20.3	q* mass g* mass b* mass ℓ* mass ν* mass	2.6 TeV 3.0 T 1.6 TeV	6.7 TeV 5.3 TeV / FeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$ \begin{array}{r} 1 \ e, \mu \\ 2 \mu \\ 2,3,4 \ e, \mu (SS \\ 3 \ e, \mu, \tau \\ - \\ - \\ \hline \end{array} $		Yes TeV	79.8 36.1 36.1 20.3 36.1 34.4	N ^p mass N _R mass H ^{±±} mass H [±] mas	560 GeV 3.2 870 GeV 2.37 0 GeV 2.37 TeV 1.22 TeV	TeV	$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ \text{DY production}, q &= 5e \\ \text{DY production}, g &= 1g_D, \text{spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	pa	in that data	Tull da	ita		10 -	1		Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

With this high luminosity:

- Explore the Higgs sector
- Improve the precision on already observed processes
- Look for never observed, rare processes:

✓ Predicted by the SM

 ✓ Only existing as part of new physics

With this high luminosity:

- Explore the Higgs sector
- Improve the precision on already observed processes
- Look for never observed, rare processes:

\checkmark Predicted by the SM

 ✓ Only existing as part of new physics

Electroweak diboson production

Electroweak diboson production

Diboson production via vector boson scattering

- Very well described process with the Standard Model
- Deviation from prediction could be a sign of new physics

EW diboson production

- can't be dissociated from VBS process
- observation and cross section measurements concern both groups of diagrams

a_{EW} order: 6

a_s order: 0

a_{EW} order: 6 a_s order: 0

Vector Boson Scattering

Diboson production via vector boson scattering

- Very well described process with the Standard Model
- Deviation from prediction could be a sign of new physics

Very characteristic kinematical profil:

- Two high P_T forward jets (high $\Delta \eta$, high M_{ii})
- Diboson products in the central region

a_{EW} order: 6

A typical VBS event (W⁺W⁺jj)

Vector Boson Scattering

Diboson production via vector boson scattering

EW sym. breaking sector: unitarity

a_s order: 0

- Can be used to constraint non SM Higgs Models with enhanced couplings to vector boson
- Could be used as an indirect probe of Higgs properties, through longitudinally-polarized boson scattering (need higher integrated luminosity)

a_{EW} order: 6

Vector Boson Scattering

Diboson production via vector boson scattering

access to Quartic Gauge Couplings

- Quartic Gauge Couplings could be modified by new physics
 →anomalous QGC
- Effect on high energy tails of kinematical distribution such as M_{ii}
- ATLAS and CMS choice for interpretation: Effective Field Theory

a_{EW} order: 6

VBS: Quartic Gauge boson Couplings (QGC)

• Anomalous QGC in a EFT framework:

$$\mathcal{L} = \mathcal{L}^{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j} \frac{f_j}{\Lambda^4} \mathcal{O}_j.$$

SM effective Lagrangian

Gauge boson interactions as described by the SM

Valid below an energy scale Λ

dim-6 : operators describing aTGCs and aQGCs

VBS processes not really competitive for their constraint **dim-8** : lowest order operators describing only aQGCs

Can be constrained by VBS

arXiv:1310.6708v1 [hep-ph] 24 Oct 2013

VBS: Quartic Gauge boson Couplings (QGC)

• Three different types of parameters:

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$
$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$
$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$
$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$
$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$
$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$
$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$
$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$
$$\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$$
$$\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$$
$$\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

mixted Higgs-field-strength (f_M) mixed longitudinal-transverse

pure field-strength tensor (f_T) pure transverse only neutral couplings can be induced HEP 2018 NTUA

$$\mathcal{L}_{S,0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{L}_{S,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$$

pure Higgs field (f_s) pure longitudinal **cannot induce couplings with photons**

-					
VVjj final state	ZZ	Zy yy	W⁺W⁻ WZ	W±W±	Wy
f _{5,0} , f _{5,1}	>		~	٢	
f _{M,0} , f _{M,1} , f _{M,6} , f _{M,7}	>	~	~	~	~
f _{M,2} , f _{M,3} , f _{M,4} , f _{M,5}	>	~	~		~
f _{T,0} , f _{T,1} , f _{T,2}	~	~	~	~	~
f _{T,5} , f _{T,6} , f _{T,7}	~	~	~		~
f _{T,8} , f _{T,9}	~	~			

21

VBS: a challenging process

QCD diboson production in association with two jets

• Very high background for most channels

EW diboson production: very characteristic kinematic signature

Same final state as EW: $|MINC|^2 = |M_{QCD} + M_{EW}|^2 = |M_{QCD}|^2 + |M_{EW}|^2 + 2 \times Re(M_{QCD}^* \times M_{EW})$ Interference term: Taken into account as shape uncertainty in most analyses

22

VBS: a challenging process

QCD diboson production in association with two jets

• Very high background for most channels

a_{EW} order: 4 a_s order: 2

VBS: a challenging process

- W[±]W[±] : lead to the first observation
 ✓ Suffers from high fake background
- WZ: first observed in 2018
 ✓ Suffers from high QCD background
- ZZ: recent observation
 ✓Very clear signature but low cross section

 $\times 10$

- $V\gamma$ and VV semi-leptonic
 - \checkmark Challenging but should lead to an observation soon (evidence for Z γ)
 - ✓ Important in order to complete the full electroweak production scheme

40

35

30

25

15

10

5

 $W^{\pm}W^{\pm}$

₽ _____ 20

Ь

VVjj-EW at $\sqrt{s} = 8$ TeV VVjj-QCD at $\sqrt{s} = 8$ TeV

VVjj-EW at $\sqrt{s} = 13$ TeV VVjj-QCD at $\sqrt{s} = 13$ TeV

 $\times 10$

 W^+W^-

 $\times 10$

Leptonic decays : e & μ Z \rightarrow II : 3.3658(23) %

 $W \rightarrow Iv : 10.86(9) \%$

P. Anger CERN-THESIS-2014-105

How to extract this low signal?

- VBS searches: generally shape based analysis
- The idea: fit taking advantage from the characteristic VBS topology
- Its minimization directly gives the signal force $\boldsymbol{\mu}$

Vector Boson Scattering: timeline

- No observation of the pure electroweak production were possible
- Both experiments built the strategy of constraining aQGCs

Vector Boson Scattering: timeline

- First observation of the electroweak W[±]W [±]jj production by both ATLAS and CMS
- First observation of the electroweak WZjj production by ATLAS

Vector Boson Scattering: timeline

- First observation of the electroweak ZZjj production by ATLAS
- Almost every other channel analysis still in progress...

W[±]W [±]jj channel

Best EW/QCD ratio channel

Selection:

- Exactly two same sign leptons and E_T^{miss}
- At least two high $P_{\scriptscriptstyle T}$ forward jets

- Non prompt leptons
- Electron charge misidentification
- Important background from WZ QCD

ssWW EW

ssWW QCD: very low

First EW diboson production observation by CMS

Observation both by ATLAS and CMS:

ATLAS: PRL 123 (2019) 161801 CMS: PRL 120 (2018) 081801

Event yields and background estimation

- Different phase space for the cross section measurement:
- Signal modelling and background estimation:

CMS

2 same sign leptons and E_T^{miss}
2 jets: m_{jj}>500 GeV for both
Centrality: only constrained for CMS

Data	201
Signal + total background	205 ± 13
Signal	66.9 ± 2.4
Total background	138 ± 13
Nonprompt	88 ± 13
WZ	25.1 ± 1.1
QCD WW	4.8 ± 0.4
$W\gamma$	8.3 ± 1.6
Triboson	5.8 ± 0.8
Wrong sign	5.2 ± 1.1

Signal: simulated in LO

(MadGraph5 aMC@NLO2.3.3: LO EWK, LO QCD)

Reducible background: extracted from data

normalized using data, in dedicated control region

Event yields and background estimation

combined

- Different phase space for the cross section measurement:
- Signal modelling and background estimation:

ATLAS

2 same sign leptons and E_T^{miss}
2 jets: m_{jj}>500 GeV for both
Centrality: only constrained for CMS

WZ	32 ± 9	
Non-prompt	23 ± 12	
e/γ conversions	13.4 ± 3.5	
Other prompt	2.4 ± 0.5	
W [±] W [±] jj strong	7.3 ± 2.5	
Expected background	78 ± 15	
W [±] W [±] jj electroweak	40.9 ± 2.9	
Data	122	

Signal: simulated in LO
(Sherpa2.2.2, LO EWK, 2,3j@LO QCD)

Reducible background: extracted from data

normalized using data, in dedicated control region

CMS analysis strategy and results

• Fiducial cross section measurement:

 $\sigma_{\rm fid}(W^{\pm}W^{\pm}jj) = 3.83 \pm 0.66 \,({\rm stat}) \pm 0.35 \,({\rm syst}) \,\,{\rm fb}$

CMS analysis strategy and results

• Limits on

in a Georgi-Machacek model of Higgs triplets predicting doubly charged Higgs bosons

$$\sigma_{\rm VBF}(H^{\pm\pm})\mathcal{B}(H^{\pm\pm} \to W^{\pm}W^{\pm})$$

ATLAS analysis strategy and results

• Signal extraction:

with a 1D template fit using m_{jj} in 6 categories simultaneously with WZ and non-prompt CR

6.9 σ observation (4.25 expected)

• Fiducial cross section measurement:

 $\sigma^{\text{fid}} = 2.91^{+0.51}_{-0.47} \text{ (stat.)} \pm 0.27 \text{ (sys.) fb}$

WZ jj channel

Low fake background

Selection:

• Exactly 3 leptons

(among those 1 opposite sign but same flavor pair)

- At least two high $P_{\scriptscriptstyle T}$ forward jets
- b-jet veto to suppress:

Low EW/QCD ratio channel

• Need to discriminate the signal using MV technics

WZ EW

WZ QCD: $\frac{EW}{QCD} < 0.5$ in a typical VBS SR

Observation by ATLAS PLB 793 (2019) 469

aGCS limits by CMS PLB 795 (2019) 281

Event yields and background estimation

- Different phase space for the cross section measurement:
- Signal modelling and background estimation:

Process	Total yield
QCD WZ	34.1 ± 1.1
t+V/VVV	12.9 ± 0.5
Nonprompt	9.9 ± 2.3
VV -	3.5 ± 0.2
$\mathrm{Z}\gamma$	2.1 ± 0.8
Pred. background	62.4 ± 2.8
EW WZ signal	15.1 ± 1.6
Data	75

CMS

3 leptons

Constraint on P_T^{miss} for CMS, on m_T^W for ATLAS 2 jets: m_{jj}>500 GeV for both Centrality: only constrained for CMS b-jet veto for both

Signal: simulated in LO

(MadGraph5 aMC@NLO2.4.2, LO EWK, LO QCD)

Reducible background: extracted from data

Irreducible background: simulated in LO

(MadGraph5 aMC@NLO2.4.2: LO with up to 3 partons at Born level)

normalized using data, in dedicated control region

Event yields and background estimation

- Different phase space for the cross section measurement:
- Signal modelling and background estimation:

ATLAS		
	SR	_
Data	161	-
Total predicted	167 ± 11	
<i>WZjj</i> –EW (signal)	44 ±11	
WZjj–QCD	91 ± 10	
Misid. leptons	7.8 ± 3.2	
ZZjj–QCD	11.1 ± 2.8	
tZj	6.2 ± 1.1	
$t\bar{t} + V$	4.7 ± 1.0	
ZZjj-EW	1.80 ± 0.45	
VVV	$0.59~\pm~0.15$	

3 leptons Constraint on P_T^{miss} for CMS, on m_T^W for ATLAS 2 jets: m_{jj}>500 GeV for both Centrality: only constrained for CMS b-jet veto for both

Signal: simulated in LO (Sherpa2.2.2, LO EWK, 2,3j@LO)

Reducible background: extracted from data

Irreducible background: simulated in LO (Sherpa2.2.2, up to 1j@ NLO + 2,3j@LO) normalized using data, in dedicated control region

Normalized in dedicated CR

CMS analysis strategy and results

CMS: interpretation studies

No evidence of WZjj EW production

BUT

Channel used to constraint BSM scenarios

• The transverse mass of the diboson system very sensitive to new physics

CMS: interpretation studies

• Limits on aQGC using m_T^{WZ} distribution:

CMS: interpretation studies

• Limits on

 $\sigma({
m H}^{\pm})\, {\cal B}({
m H}^{+} o {
m WZ})$ (Georgi-Machacek model predicting enhanced coupling with bosons)

combined fit of EW+QCD in the SR and QCD in the QCD CR

41

• Fiducial cross section measurement:

 $\sigma_{WZjj-EW}^{\text{fid.}} = 0.57 \,{}^{+0.14}_{-0.13} \,(\text{stat.}) \,{}^{+0.05}_{-0.04} \,(\text{exp. syst.}) \,{}^{+0.05}_{-0.04} \,(\text{mod. syst.}) \,{}^{+0.01}_{-0.01} \,(\text{lumi.}) \,\text{fb}$

ATLAS analysis strategy and results

• QCD+EW fiducial cross section measurement:

$$\sigma_{W^{\pm}Zjj}^{\text{fid.}} = 68 \pm 0.25 \text{ fb}$$

• Differential cross section measurement (QCD and EW)

ZZ jj channel

Low fake background

- Exactly 2 pairs leptons
 (opposite sign but same flavor pairs)
- Or: 1 lepton pair and E_T^{miss}

(opposite sign but same flavor pair)

• At least two high P_T forward jets

Low cross section and EW/QCD ratio channel

Need to discriminate the signal using MV technics

CMS:

PLB 774 (2017) 682 (only 2015-2016, no observation)

ATLAS:

ATLAS-CONF-2019-033 EPS-HEP 2019 Ghent, Belgium, 10 - 17 July 2019

Event yields and background estimation

- Different phase space for the cross section measurement:
- Signal modelling and background estimation:

ATLAS

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
${ m EW}~ZZjj$	20.6 ± 2.5	12.3 ± 0.7
$\operatorname{QCD} ZZjj$	77.4 ± 25.0	17.2 ± 3.5
$QCD \ ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	-	21.4 ± 4.8
WZ	-	22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114.3 ± 25.6	78.4 ± 6.2
Data	127	82

4 leptons or 2 leptonos and constraint on E_T^{miss} 2 jets: m_{jj}>300 GeV for IIII, m_{jj}>400 GeV for IIvv

Signal: simulated in LO (MadGraph5_aMC@NLO 2.6.1)

Irreducible background:

(Sherpa2.2.2 for both ZZjj and ggZZjj, up to one (three) outgoing partons are generated at NLO (LO)) normalized using data, in dedicated control region

ATLAS analysis strategy and results

• Signal extraction:

with a 1D template fit using BDT score in both channels simultaneously with QCD CR

5.5 σ observation (4.3 expected)

• Fiducial cross section measurement (*fb*⁻¹):

 $\ell \ell \ell \ell j j \mid 1.27 \pm 0.12 (\text{stat}) \pm 0.02 (\text{theo}) \pm 0.07 (\text{exp}) \pm 0.01 (\text{bkg}) \pm 0.03 (\text{lumi})$

 $\ell \ell \nu \nu j j \mid 1.22 \pm 0.30 (\text{stat}) \pm 0.04 (\text{theo}) \pm 0.06 (\text{exp}) \pm 0.16 (\text{bkg}) \pm 0.03 (\text{lumi})$

ATLAS analysis strategy and results

• Signal extraction:

with a 1D template fit using BDT score in both channels simultaneously with QCD CR, b-CR and ZZ-CR

5.5 σ observation (4.3 expected)

• Fiducial cross section measurement:

 $\ell \ell \ell \ell j j = 1.27 \pm 0.12 (\text{stat}) \pm 0.02 (\text{theo}) \pm 0.07 (\text{exp}) \pm 0.01 (\text{bkg}) \pm 0.03 (\text{lumi})$

 $\ell \ell \nu \nu j j \mid 1.22 \pm 0.30 (\text{stat}) \pm 0.04 (\text{theo}) \pm 0.06 (\text{exp}) \pm 0.16 (\text{bkg}) \pm 0.03 (\text{lumi})$

Main sources of systematic uncertainty

ATLAS WZjj analysis

Source	Uncertainty [%]
Jets	6.7
Pileup	2.2
Electrons	1.6
Muons	0.7
<i>b</i> -tagging	0.3
MC statistics	2.1
Misid. lepton background	1.0
Other backgrounds	0.1
Theory $(WZjj-EW)$	5.0
Theory $(WZjj-QCD)$	2.3
<i>WZjj</i> -EW and <i>WZjj</i> -QCD interference	1.9
Luminosity	2.1

Main uncertainty: jet reconstruction and calibration

Theory uncertainties:

Low uncertainties from QCD scale and PDF (flat wrt main kinematic variables)

VERY important modelling uncertainties!! (comparison on different generators)

Interferences: shape uncertainty Can we measure it directly with data?

Theoretical uncertainties

Important dependence on generator \rightarrow high theoretical uncertainties on the measurement

Theoretical uncertainties

- Important QCD and EW corrections
- Negative EW corrections (~ 15-20%)

- LO

— NLO QCD

NLO EW

800

1000

NLO QCD+EW

 2×10^{-1}

10"

 6×10^{-1}

20

 $-\mathcal{X}$

600

 $d\sigma/dM_{j,th}$ [fb GeV⁻¹]

Towards aQGC constraining

- Explore kinematic variables sensitive to aQGC (depending on the channel)
- aGQC would appear as excess to the high energy tails
- Usually constraint one aQGC parameter at the time

Towards aQGC constraining

- Explore kinematic variables sensitive to aQGC (depending on the channel)
- aGQC would appear as excess to the high energy tails
- Usually constraint one aQGC parameter at the time

Limits on aQGC

- All explored aQGC parameters compatible with the Standard Model
- Both experiments have set constraints
- No comparison possible right now

Limits on aQGC

• Unitarity problem: violated by the aQGC introduction

- Different treatment by ATLAS and CMS
- Towards a common decision

Zγ : CMS like

	Limits 95% CL	Measured [TeV ⁻⁴]	Expected [TeV ⁻⁴]	$\Lambda_{\rm FF}$ [TeV]
ĺ	f_{T9}/Λ^4	$[-4.1, 4.1] \times 10^3$	$[-3.7, 3.8] \times 10^3$	
	f_{T8}/Λ^4	$[-1.9, 1.9] \times 10^3$	$[-1.8, 1.8] imes 10^3$	
	f_{T0}/Λ^4	$[-2.1, 2.0] imes 10^1$	$[-1.9, 1.8] \times 10^{1}$	
	f_{M0}/Λ^4	$[-1.8, 1.8] \times 10^2$	$[-1.7, 1.6] \times 10^2$	
	f_{M1}/Λ^4	$[-4.0, 4.0] imes 10^2$	$[-3.7, 3.7] \times 10^2$	
	f_{M2}/Λ^4	$[-1.0, 1.0] \times 10^3$	$[-9.4, 9.3] \times 10^2$	
	f_{M3}/Λ^4	$[-1.9, 1.9] \times 10^3$	$[-1.8, 1.8] \times 10^3$	
	f_{T9}/Λ^4	$[-6.9, 6.9] \times 10^4$	$[-6.3, 6.3] \times 10^4$	0.7
	f_{T8}/Λ^4	$[-3.3, 3.3] \times 10^4$	$[-3.0, 3.0] \times 10^4$	0.7
	f_{T0}/Λ^4	$[-8.0, 7.1] imes 10^1$	$[-7.2, 6.6] \times 10^{1}$	1.7
	f_{M0}/Λ^4	$[-1.0, 1.0] \times 10^3$	$[-9.7, 9.4] \times 10^2$	1.0
	f_{M1}/Λ^4	$[-1.8, 1.8] \times 10^3$	$[-1.6, 1.7] \times 10^3$	1.2
	f_{M2}/Λ^4	$[-1.1, 1.2] \times 10^4$	$[-1.1, 1.1] \times 10^4$	0.7
	f_{M3}/Λ^4	$[-1.7, 1.7] \times 10^4$	$[-1.6, 1.6] \times 10^4$	0.8

Zγ : ATLAS like

Semi leptonic channels

Combination of WW, ZZ and WZ channels

Selection:

- One leptonically decayed boson
- One hadronically decayed boson
- At least two high P_T forward jets

Very challenging analysis but with high theoretical interest

- Jet substructure techniques allow to explore high-Pt regions
- High sensitivity to aQGCs

CMS:

Phys. Lett. B 798, 134985 (2019)

ATLAS:

Phys. Rev. D 100, 032007 (2019) Phys. Rev. D 95, 032001 (2017)

Semi leptonic channels

Combination of WW, ZZ and WZ channels

Selection:

- One leptonically decayed boson
- One hadronically decayed boson
- At least two high P_T forward jets

Very challenging analysis but with high theoretical interest

- Jet substructure techniques allow to explore high-Pt regions
- High sensitivity to aQGCs

Vector Boson Scattering: long term future

- Up to 3000 fb⁻¹ could allow us to reach very detailed VBS features, such as polarized states scattering (such as V_1V_1)
- This will also need an important improvement from the performance and analysis techniques side, using for example advanced machine learning techniques

Longitudinal polarization in VBS

- $V_L V_L \rightarrow V_L V_L$ deeply linked to the EWSB
- Without it, unitarity would be violated
- Important test to the SM

Decay angle for the three polarization states

Longitudinal polarization in VBS

- Very chalenging experimentaly
- Very low cross section
- $W_L Z_L$ only 5% of the total WZ
- Must exploit all kinematic differences between the different polariuzation states
- Machine Learning analyses?

HL-LHC projection for the ZZ channel

- 700 expected events in the fully leptonic final states
- Important improvement on the cross section uncertainty
- Study of the $V_L V_L$ channel
- Results for 6000 fb⁻¹

(approximately ATLAS-CMS combination)

HL-LHC projection for the ZZ channel

Improvement on the cross section uncertainty

Increasing sensitivity to the $Z_L Z_L$ channel

61

HL-LHC projection for the WZ and W[±]W[±] channels

- Almost 3000 events expected for WZ and more than 5000 for WW
- Similar improvement on the cross section measurement
- A first combination attempt suggests a possible V_LV_L→ V_LV_L evidence before the end of HL-LHC

Conclusions

- Vector Boson scattering became accessible with Run 2 LHC data
- Electroweak diboson production was observed in the W[±]W[±]jj, WZjj and ZZjj final states
- More channels to come (Ζγjj, semileptonic channels)
 - will allow to study different quartic boson couplings
 - could lead to combination studies
- Full Run 2-3 and, in the longer term, HL-LHC statistics will allow further interpretation studies
 - Anomalous quartic gauge boson couplings
 - polarized VBS: probably access the pure $V_LV_L \rightarrow V_LV_L$ scattering
- Need to progress on:
 - Experimental analysis techniques (probably using machine learning)
 - Performance studies (high pile-up conditions, quark-gluon discrimination...)
 - Theoretical calculations (and way to include them into the analysis)