Higgs and CP violation

Stefania Gori UC Santa Cruz

Higgs hunting 2021 September 20, 2021

Plan of the talk

1. Main question & Introduction :

Can the Higgs have (hidden) CP violating (CPV) couplings? Experimental status of the searches for an electron EDM

2. Indirect constraints on CPV Higgs couplings

* EDM constraints: a complete (gauge invariant) calculation
 * Higgs rate measurements

3. <u>Direct</u> constraints on CPV Higgs couplings

Differential distributions in Higgs boson productions / decays
 Possible new searches for heavy CPV Higgs bosons

Main references for this talk

Altmannshofer, SG, Hamer, Patel, 2009.01258

SG, Hamer, in preparation (21xx.xxxx)

Focusing on 2HDMs

Higgs and CP violation

In the Standard Model (SM),

The only source of CP violation comes from the electroweak sector (CKM phase).
The Higgs has scalar couplings with SM particles.

We need to test these two statements!

From the experimental point of view,

The Higgs CP nature is one of the least known properties of the Higgs boson.
By now, the CP-odd hypothesis is strongly disfavored.

What if the Higgs is a CP even - CP odd admixture?

Generically, UV scenarios (e.g. 2HDMs) involve extended Higgs sectors and the possibility of CPV Higgs couplings.

Baryon asymmetry (typically) requires new sources of CPV

EDMs, experimental status & prospects

$${\cal L}_{
m eff} = -\sum_f {i d_f \over 2} (ar f \sigma^{\mu
u} \gamma_5 f) F_{\mu
u}$$

from Altmannshofer, SG, Patel, Profumo, Tuckler, 2002.01400

observable	SM theory	current exp.	projected sens.
d_e	$< 10^{-44} \ e \ {\rm cm}$	$<1.1\times10^{-29}e{\rm cm}$	$\sim 10^{-30} e \mathrm{cm}$
d_{μ}	$< 10^{-42} \ e \ {\rm cm}$	$< 1.9 \times 10^{-19} e {\rm cm}$	$\sim 10^{-23} e \mathrm{cm}$
$d_{ au}$	$< 10^{-41} \ e \ {\rm cm}$	$< 4.5 \times 10^{-17} e \mathrm{cm}$	$\sim 10^{-19}e{\rm cm}$
d_n	$\sim 10^{-32} \ e \ {\rm cm}$	$< 3.6 \times 10^{-26} e {\rm cm}$	$few \times 10^{-28} e cm$

EDMs, experimental status & prospects

$${\cal L}_{
m eff} = -\sum_f {i d_f\over 2} (ar f \sigma^{\mu
u} \gamma_5 f) F_{\mu
u}$$

from Altmannshofer, SG, Patel, Profumo, Tuckler, 2002.01400

observable	SM theory	current exp.	projected sens.
d_e	$< 10^{-44} \ e \ {\rm cm}$	$< 1.1 \times 10^{-29} e \mathrm{cm}$	$\sim 10^{-30} e \mathrm{cm}$
d_{μ}	$< 10^{-42} \ e \ {\rm cm}$	$< 1.9 \times 10^{-19} e \mathrm{cm}$	$\sim 10^{-23} e \mathrm{cm}$
$d_{ au}$	$< 10^{-41} \ e \ {\rm cm}$	$< 4.5 \times 10^{-17} e \mathrm{cm}$	$\sim 10^{-19} e \mathrm{cm}$
d_n	$\sim 10^{-32} \ e \ {\rm cm}$	$< 3.6 \times 10^{-26} e {\rm cm}$	$few \times 10^{-28} e cm$
	example diagrams in the Standard Model:	d _e : ACME collaboration d _u : g-2 collaboration	ACME collaboration EDM experiment
	(W) (W)	d _τ : Belle collaboration	@ PSI Belle II & e+e⁻ experiments
S.Gori			4

EDMs, experimental status & prospects

$${\cal L}_{
m eff} = -\sum_f {i d_f \over 2} (ar f \sigma^{\mu
u} \gamma_5 f) F_{\mu
u}$$

from Altmannshofer, SG, Patel, Profumo, Tuckler, 2002.01400

Indirect probes of Higgs CPV couplings

Electron EDMHiggs rate measurements

EDMs, naive bounds on Higgs CPV couplings (EFT approach)

If the Higgs has CP violating couplings:

$$\mathcal{L} \supset -\frac{y_f}{\sqrt{2}} \left(\kappa_f \, \bar{f} f + i \kappa_f \, \bar{f} \gamma_5 f \right) h$$

EDMs, naive bounds on Higgs CPV couplings (EFT approach)

If the Higgs has CP violating couplings:

$$\mathcal{L} \supset -\frac{y_f}{\sqrt{2}} \left(\kappa_f \, \bar{f} f + i \kappa_f \, \bar{f} \gamma_5 f \right) h$$

for example from

dim. 6 operators:

 $rac{c}{M^2}|H|^2ar e_L He_R$

 γ/Z

 $\frac{d_e}{\rho} = \frac{16}{3} \frac{\alpha}{(4\pi)^3} \sqrt{2} G_F m_e \left[\kappa_e \tilde{\kappa}_t f_1(x_{t/h}) + \tilde{\kappa}_e \kappa_t f_2(x_{t/h}) \right]$ $egin{aligned} | ilde{\kappa}_e| \lesssim 1.7 imes 10^{-2} \ | ilde{\kappa}_t| \lesssim 1.0 imes 10^{-2} \end{aligned}$ electron EDM bound

For the first time computed in Altmannshofer et al, 1503.04830

Gauge-dependent contributions to the EDM.

To achieve a gauge invariant result, one needs to add diagrams like:

UV-divergent.

Problem of EFT approach

Altmannshofer, SG, Hamer, Patel, 2009.01258

The complex 2HDM

Most general Higgs potential for a 2HDM with a softly broken Z₂ symmetry:

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \frac{1}{2} (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} (\lambda_{5}) \Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.})$$

Only one independent phase

125 GeV
Higgs
$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \mathcal{R} \begin{pmatrix} \rho_1 \\ \rho_2 \\ A \end{pmatrix}$$

mass basis used
eigenstates above $\mathcal{R} = \begin{pmatrix} -s_{\alpha}c_{\alpha_2} & c_{\alpha}c_{\alpha_2} & s_{\alpha_2} \\ s_{\alpha}s_{\alpha_2}s_{\alpha_3} - c_{\alpha}c_{\alpha_3} & -s_{\alpha}c_{\alpha_3} - c_{\alpha}s_{\alpha_2}s_{\alpha_3} & c_{\alpha_2}s_{\alpha_3} \\ s_{\alpha}s_{\alpha_2}c_{\alpha_3} + c_{\alpha}s_{\alpha_3} & s_{\alpha}s_{\alpha_3} - c_{\alpha}s_{\alpha_2}c_{\alpha_3} & c_{\alpha_2}c_{\alpha_3} \end{pmatrix}$

The complex 2HDM

Most general Higgs potential for a 2HDM with a softly broken Z₂ symmetry:

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \frac{1}{2} (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} (\lambda_{5}) \Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.})$$

Only one independent phase

$$\begin{aligned} \mathsf{Higgs} \stackrel{h_1}{\begin{pmatrix} h_2 \\ h_3 \end{pmatrix}} &= \mathcal{R} \begin{pmatrix} \rho_1 \\ \rho_2 \\ A \end{pmatrix} \\ & \text{mass basis used} \\ \text{eigenstates above} \end{aligned} \qquad \mathcal{R} = \begin{pmatrix} -s_\alpha c_{\alpha_2} & c_\alpha c_{\alpha_2} & s_{\alpha_2} \\ s_\alpha s_{\alpha_2} s_{\alpha_3} - c_\alpha c_{\alpha_3} & -s_\alpha c_{\alpha_3} - c_\alpha s_{\alpha_2} s_{\alpha_3} \\ s_\alpha s_{\alpha_2} c_{\alpha_3} + c_\alpha s_{\alpha_3} & s_\alpha s_{\alpha_3} - c_\alpha s_{\alpha_2} c_{\alpha_3} \end{pmatrix} \end{aligned}$$

Set of free parameters (phenomenological):

 $m_{h_1}, m_{h_2}, m_{h_3}, m_{H^{\pm}}, \alpha \text{ (or } x), \alpha_2, \nu, \tan \beta$

$$u \equiv rac{\operatorname{Re}(m_{12}^2)}{v^2 \sin 2\beta}, \ \ \alpha = \beta - \pi/2 + x$$

 α_3 will be a function of these parameters

125 GaV

Not all parameters are good parameters

Once the spectrum is fixed, the mixing angles cannot be arbitrary.

S.Gori

$$(m_{h_1}, m_{h_2}, m_{h_3}, m_{H^{\pm}}) = (125, 400, 450, 420) \text{GeV}, \ x = 0$$

7

EDMs, a complete 2HDM study

Many contributions to the electron EDM:

Altmannshofer, SG, Hamer, Patel, 2009.01258

EDMs, a complete 2HDM study

Many contributions to the electron EDM:

EDMs, a complete 2HDM study, gauge dependence

Barr-Zee	Fermion loop	Charged Higgs loop	Gauge boson loop
Electromagnetic	$\delta_f^{\rm EM}$ (24)	$\delta_{H^+}^{\rm EM}$ (27)	$\delta_W^{\rm EM}(\xi)$ (30)
$\gamma Q h_k$			
Neutral current \downarrow	$\delta_f^{ m NC}~(25)$	$\delta_{H^+}^{ m NC}~(28)$	$\delta_W^{ m NC}(\xi)$ (31)
$Z Q h_k$			
Charged current	_	$\delta_{H^+}^{ m CC}$ (29)	$\delta_W^{ m CC}(\xi)~(35)$
W Q H-			
Kite			
Neutral current $\frac{1}{3}$	_	_	$\delta_{\rm kite}^{\rm NC}$ (38)
Charged current	_	_	$\delta_{\rm kite}^{\rm CC}(\xi)$ (39)
W h_k			

Altmannshofer, SG, Hamer, Patel, 2009.01258

EDMs, 2HDM results

EDMs, 2HDM results

10

Other indirect probes: Higgs rate measurements (1)

$$\mathcal{L}_{ ext{Yuk}} = -rac{m_{f_i}}{v} (ar{f}_i \kappa_f^{(1)} f_i + i ar{f}_i \gamma_5 ilde{\kappa}_f^{(1)} f_i) h_1$$

Free parameters for the Higgs pheno:

 $\alpha_2, x, \tan \beta, \nu$ only mildly entering through the Higgs self-coupling & Higgs coupling to the other Higgs bosons

	Type I	Type II
$\kappa^{(1)}_{}$	$c_{lpha_2}c_{lpha}$	$\underline{c_{lpha_2}c_{lpha}}$
$\begin{array}{c} u \\ (1) \end{array}$	s_{eta}	s_{eta}
$\kappa_{d,\ell}^{(1)}$	$\frac{c_{\alpha_2}c_{\alpha}}{s_{\alpha}}$	$-\frac{c_{\alpha_2}s_{\alpha}}{c_{\alpha}}$
$ ilde{m{\kappa}}^{(1)}$	$s_{oldsymbol{lpha_2}}$	s_{lpha_2}
u (1)	$-t_{eta}$	$-\overline{t_{eta}}$
$ ilde{\kappa}_{d,\ell}^{(1)}$	$\frac{s_{\alpha_2}}{t}$	$-s_{lpha_2}t_eta$
	$\iota_{oldsymbol{eta}}$	

Some rates are easily scaled from the SM predictions:

e.g.
$$\Gamma(h_1 \to b\bar{b}) \simeq \Gamma(h \to b\bar{b})_{\rm SM}(|\kappa_d|^2 + |\tilde{\kappa}_d^{(1)}|^2)$$

Some other rates are more complicated: e.g.

 $\sigma(gg \to h) \simeq \sigma(gg \to h)_{\rm SM} \times$

 $\times (1.1\kappa_u^2 + 3.6 \times 10^{-3}\kappa_d^2 - 0.12\kappa_u\kappa_d + 2.5(\tilde{\kappa}_u^{(1)})^2 + 3.6 \times 10^{-3}(\tilde{\kappa}_d^{(1)})^2 + 0.19\tilde{\kappa}_u^{(1)}\tilde{\kappa}_d^{(1)})$ S.Gori 11

Other indirect probes: Higgs rate measurements (2)

Other indirect probes: Higgs rate measurements (2)

S.Gori

Chapter 3:

Direct probes of Higgs CPV couplings

- Higgs distributions
- Signals of CPV from additional Higgs bosons

(image: DESY/designdoppel)

Direct searches for Higgs CPV (bosonic)

Direct searches for Higgs CPV (bosonic)

 h → bb with the Higgs produced in association with a vector boson

$$egin{aligned} ilde{g}_{hZZ} \lesssim rac{1}{3 imes 10^3 ~{
m GeV}} & (137 ~{
m fb}^{-1}, {
m CMS} ~{
m PAS} ~{
m HIG}^{-19-009} \ ilde{g}_{hZZ} \lesssim rac{1}{8 imes 10^3 ~{
m GeV}} & ({
m HL}^{-1}{
m LHC}, 1902.00134) \end{aligned}$$

(*) Challenging to probe CPV Higgs mixing angles arising from this minimal 2HDM

Direct searches for Higgs CPV (fermionic)

Direct searches for Higgs CPV (fermionic)

$$\begin{split} \mathcal{L}_{\mathrm{Yuk}} \supset -\frac{m_f}{v} \left(\kappa_f \bar{f}f + i\tilde{\kappa}_f \bar{f}\gamma_5 f \right) h & \text{(arising at tree level in the complex 2HDM)} \\ * \text{ Search for tth, } h \rightarrow \gamma \gamma: \left| \frac{\tilde{\kappa}_t}{\kappa_t} \right| \lesssim 0.93 & \text{(139 fb}^{-1}, \\ \pi \mathrm{TLAS}, 2004.04545; \\ \mathrm{CMS}, 2003.10866) & \tilde{\kappa}_{d,\ell} & \frac{s_{\alpha_2}}{t_{\beta}} & -\frac{s_{\alpha_2}}{t_{\beta}} \\ \tilde{\kappa}_{d,\ell} & \frac{s_{\alpha_2}}{t_{\beta}} & -s_{\alpha_2} t_{\beta} \\ \text{ Search for } h \rightarrow \tau^{\pm} \tau^{\mp} : \left| \frac{\tilde{\kappa}_{\tau}}{\kappa_{\tau}} \right| \lesssim 0.73 & \text{(137 fb}^{-1}, \text{ CMS PAS HIG}^{-20-006} \end{split}$$

ILC, 250 GeV, 2ab⁻¹: angle can be measured with a 4.3° precision $\sim |\tilde{\kappa}/\kappa|$

CEPC, 250 GeV, 5ab⁻¹: angle can be measured with a 2.9° precision $\sim |\tilde{\kappa}/\kappa|$

Direct searches for Higgs CPV (fermionic)

Additional CPV Higgs coupling probes

An (incomplete) list...

tt Goncalves, Kim, Kong, Wu [2108.01083]

htt, h \rightarrow bb. Uses boosted Higgs regime and fat-jets to be Higgs-tagged via the BDRS algorithm.

Zγ Farina, Grossman, Robinson [1503.06470] Takes advantage of interference between continuum background and signal from gluon initiated events.

Gg Dolan, Harris, Jankowiak, Spannowsky [1406.3322] gg \rightarrow hjj, h \rightarrow τ τ . Uses associated jets for angular analysis.

YY Bishara, Grossman, Harnik, Robinson, Shu, Zupan [1312.2955] Requires converted photons and angular resolution on leptonic opening angles.

Heavy Higgs pheno. CPV signatures

H₃ and H₂ can lead to striking CPV signatures Examples: * both H₃ and H₂ decaying to WW and ZZ * H₃ \rightarrow H₂ Z, H₂ \rightarrow H₁ Z * H₃ \rightarrow H₁ H₂ * ...

Heavy Higgs pheno. CPV signatures H₃ and H₂ can lead to striking CPV signatures Examples: * both H_3 and H_2 decaying to WW and ZZ ***** H_3 → H_2 Z, H_2 → H_1 Z Electroweak precision tests (* H₃ \rightarrow H₁ H₂ Higgs rates *... Electron EDM 🕢 $m_{h_2} = m_{h_3} - 320 \; { m GeV}, \; m_{H^\pm} = m_{h_3} + 7 \; { m GeV},$ Example benchmark SG. Hamer. (type II): $x = -0.04, \ \alpha_2 = 0.125, \ \lambda_2 = 3, \ \tan \beta \sim 1$ in progress Preliminary $BR(H_2)$ BR(H₃) 1 $\mathcal{B}(h_2 \rightarrow tt)$ $\mathcal{B}(h_3 \rightarrow Zh_2)$ $\mathcal{B}(h_3 \rightarrow tt)$ vacuum stability vacuum stability vacuum stability vacuum stability 0.1 0.1 $\mathcal{B}(h_3 \rightarrow WW)$ $\mathcal{B}(h_2 \rightarrow Zh_1)$ $\mathcal{B}(h_2 \rightarrow h_1 h_1)$ 0.01 0.01 $\mathcal{B}(h_2 \rightarrow WW)$ $\mathcal{B}(h_3 \rightarrow ZZ)$ $\mathcal{B}(h_3 \rightarrow h_1 h_1)$ $\mathcal{B}(h_3 \rightarrow Zh_1)$ 0.001 0.001 $\mathcal{B}(h_2 \rightarrow bb)$ $\mathcal{B}(h_2 \rightarrow ZZ)$ $\mathcal{B}(h_2 \rightarrow gg)$ 700 800 900 1000 1100 1200 1100 700 800 900 1000 1200 m_{h3} (GeV) m_{h3} (GeV) S.Gori 16

Rates for the heavy Higgs CPV signatures

 $egin{aligned} m_{h_2} &= m_{h_3} - 320 \; ext{GeV}, \; m_{H^\pm} = m_{h_3} + 7 \; ext{GeV}, \ x &= -0.04, \; lpha_2 = 0.125, \; \lambda_2 = 3, \; ext{tan} \; eta \sim 1 \end{aligned}$

(*) new proposed search → CPV decays

Some part of the parameter space is already probed by direct searches.

For the specific benchmark, the most relevant constraint comes from searches for $pp \rightarrow ttH_{(2)}, H_{(2)} \rightarrow tt$

 $m_{H3}\gtrsim 700~{
m GeV}$

Conclusions and outlook

Testing the CP nature of the Higgs should be a high priority goal for the coming years.

Generically, searches for EDMs set very stringent constraints on CPV Higgs couplings

(image: DESY/designdoppel)

<u>However</u>, there are regions of parameters not probed by EDMs (the example discussed in this talk is the complex 2HDM)

Other indirect probes: di-boson production

Beyond Higgs measurements, measurements of di-boson production can unveil the existence of new sources of CPV in triple gauge couplings

For example:

$$\mathcal{L}_{\text{eff}} \supset \frac{\tilde{\kappa}_{ZZZ}}{m_Z^2} \partial_\mu Z_\nu \partial^\mu Z^\rho \partial_\rho Z^\nu$$

this CPV operator enters eg. the pp \rightarrow ZZ production (together with CP conserving operators)

Backup