

Rheinische -Friedrich-Wilhelms Universität Bonn

Search for HH $\rightarrow bb\tau\tau$ in ATLAS

Tatjana Lenz (U Bonn) on behalf of the ATLAS collaboration

September 22, 2021

Why to search for HH?

H

- Higgs potential $V(H) = \frac{m_{H}^{2}}{2}H^{2} + \lambda v H^{3} + \frac{\lambda}{4}H^{4} \qquad \text{SM:} \quad \lambda = \frac{m_{H}^{2}}{2v^{2}} = 0.13$ mass term $m_{H} = 125.10 \pm 0.14 \text{ GeV}$ $g_{\text{UDG 2020}}$ $f_{\text{UDG 2020}}$
 - Higgs self-interactions
 - indirect via single Higgs production at higher order
 - direct via di-Higgs production

HH Production SM

• **HH production** \rightarrow 2 diagrams in the SM

HH Production SM & BSM

HH production \rightarrow non-resonant and resonant

Tatjana Lenz

UNIVERSITÄT BONN

- **SM HH production** cross section 1000 times smaller than $pp \rightarrow H$
 - two diagrams with **destructive interference** = **31 fb** @ **13 TeV**
- **BSM** can lead to enhancement in the HH production
 - **non-resonant** production due to modified λ , new vertices or new particles in the loop
 - resonant production modes: KK gravitons, H in 2HDM, new scalar singlets, cross sections up to O(pb)

• **HH production** \rightarrow non-resonant via ggF and VBF

non-resonant VBF

• VBF production is sub-dominant = 1.7 fb @ 13 TeV

How to search for HH?

Tatjana Lenz

UNIVERSITÄT BONN

HH Decays

)	\square
Channel	Lumi, fb^{-1}	Reference			JS UECO 1 Higgs BR			0.0005%
4b	28-36 126-139	JHEP 01 (2019) 030 ATLAS-CONF-2021-035		m _H = 125 G€	٧		0.07%	0.01%
2b2W	36	JHEP 04 (2019) 029	. 🞽				H	\square
2b2τ	139	ATLAS-CONF-2021-030	E	Chipublish		0.4%	0.3%	0.03%
4W	36	JHEP 05 (2019) 124						
2b2γ	139	ATLAS-CONF-2021-016	Į		5 %	3%		0.1%
$2W2\gamma$	36	EPJC 78 (2018) 1007						
comb	36	1906.02025	9	34%	25%	7%	3%	0.3%
2blvlv	139	1908.0676						
VBF 4b	126	JHEP 07 (2020) 108		hh				
			F. Costar	nza DD			44	W

most promising channels at LHC: 4b, bbtt and bbyy

$HH \rightarrow bb\tau\tau$

Pros:

- sizeable branching ratio (7%)
- moderate bkg contamination

Cons:

- neutrinos in τ decays
- challenging had. τ reco and triggering

UNIVERSITÄT BONN

HH bbtt: Event Selection

$ au_{ m had} au_{ m had} m cat$	egory	$\tau_{\rm lep} \tau_{\rm had}$ categories					
single-τ trigger STT	di-τ trigger DTT	single-lepton trigger SLT	lepton-τ trigger LTT				
e/μ selection							
No loose e/μ with	$p_{\rm T} > 7 { m GeV}$	Exactly one tigh	It <i>e</i> or medium μ				
		$p_{\rm T}^{e} > 25, 27 \; {\rm GeV}$	$18 \text{ GeV} < p_{\mathrm{T}}^{e} < \text{SLT cut}$				
		$p_{\rm T}^{\hat{\mu}} > 21, 27 \; { m GeV}$	$15 \text{ GeV} < p_{\mathrm{T}}^{\hat{\mu}} < \text{SLT cut}$				
		$ \eta^e < 2.47$, not 1	$1.37 < \eta^e < 1.52$				
		$ \eta^{\mu} < 2.7$					
	$ au_{ ext{had-vis}}$	selection					
Two loose	$ au_{ m had-vis}$	One loose $\tau_{had-vis}$					
$ \eta < 2$	2.5	$ \eta < 2.3$					
$p_{\rm T} > 100, 140, 180 (25) {\rm GeV}$	$p_{\rm T} > 40 \; (30) \; {\rm GeV}$	$p_{\rm T} > 20 { m ~GeV}$	$p_{\rm T} > 30 { m GeV}$				
	Jet s	election					
	≥ 2 jets with $ \eta < 2.5$						
$p_{\rm T} > 45 \ (20) \ {\rm GeV}$	Trigger dependent	$p_{\rm T} > 45 \ (20) \ {\rm GeV}$	Trigger dependent				
	Event-level selection						
Trigger requirements passed							
Collision vertex reconstructed							
$m_{\tau\tau}^{\rm MMC} > 60 { m ~GeV}$							
Opposite-sign electric charges of $e/\mu/\tau_{had-vis}$ and $\tau_{had-vis}$							
Exactly two <i>b</i> -tagged jets							
	$m_{bb} < 150 \text{ GeV}$						

HH bbττ: Fake $τ_{had}$ Bkg

- Jets can fake hadronic τ 's
 - source: multijet, W+jets, $t\bar{t}$
 - fake-probability depends on jet-type: gluon- or quark-jet
- Data-driven approach
- Fake-enriched sample: τ fails default τ-identification but satisfies a looser τidentification
- Contribution from non-fake bkgs evaluated using MC

multijet fakes in $\tau_{had} \tau_{had}$ channel

$$N_A = \frac{N_C}{N_D} \cdot N_B = FF \cdot N_B$$

HH bbtt: MVA Analysis

- Multivariate techniques to separate signal and bkgs
 - Parametric Neural Networks (PNN) for resonant search
 - Neural Network (NN) / Boosted Decision Trees (BDT) for non-resonant search
- 6 11 input variables depending on the channel
 - strongest separation: inv. mass of HH-, bb- and $\tau\tau$ -systems and angular distance between b-jets and τ 's
- Use MVA score as final discriminant in the fit

MVA Score Distributions

HH bbtt: Systematics

• Relative contribution to the uncertainty in the extracted signal cross-sections (sum in quadrature)

		Resonant $X \to HH$				
Uncertainty source	Non-resonant HH	$300~{\rm GeV}$	$500 {\rm GeV}$	$1000~{\rm GeV}$		
Data statistical	81%	75%	89%	88%		
Systematic	59%	66%	46%	48%		
$t\bar{t}$ and $Z + HF$ normalisations	4%	15%	3%	3%		
MC statistical	28%	44%	33%	18%		
Experimental						
Jet and $E_{\rm T}^{\rm miss}$	7%	28%	5%	3%		
<i>b</i> -jet tagging	3%	6%	3%	3%		
$ au_{ ext{had-vis}}$	5%	13%	3%	7%		
Electrons and muons	2%	3%	2%	1%		
Luminosity and pileup	3%	2%	2%	5%		
Theoretical and modelling						
Fake- $\tau_{had-vis}$	9%	22%	8%	7%		
Top-quark	24%	17%	15%	8%		
$Z(\to au au) + \mathrm{HF}$	9%	17%	9%	15%		
Single Higgs boson	29%	2%	15%	14%		
Other backgrounds	3%	2%	5%	3%		
Signal	5%	15%	13%	34%		

HH bbττ Resonant Production UNIVERSITÄT BONN

Tatjana Lenz

most significant local excess at 1.0 (1.1) TeV in the $\tau_{had}\tau_{had}(\tau_{lep}\tau_{had})$ channel of 2.8 σ (1.5 σ) \rightarrow combined at 1 TeV: local (global) excess of 3.0 σ (2.0 σ)

UNIVERSITÄT BONN

HH Resonant Production

results can be used for re-interpretations if resonance width below experimental resolution

Tatjana Lenz UNIVERSITÄT BONN

		Observed	-2σ	-1σ	Expected	$+1 \sigma$	$+2 \sigma$
$ au_{ m had} au_{ m had}$	$\sigma_{\rm ggF+VBF}$ [fb]	145	70.5	94.6	131	183	245
	$\sigma_{\rm ggF+VBF}/\sigma_{\rm ggF+VBF}^{\rm SM}$	4.95	2.38	3.19	4.43	6.17	8.27
$ au_{ m lep} au_{ m had}$	$\sigma_{\rm ggF+VBF}$ [fb]	265	124	167	231	322	432
	$\sigma_{\rm ggF+VBF}/\sigma_{\rm ggF+VBF}^{\rm SM}$	9.16	4.22	5.66	7.86	10.9	14.7
Combined	$\sigma_{\rm ggF+VBF}$ [fb]	135	61.3	82.3	114	159	213
	$\sigma_{ m ggF+VBF}/\sigma_{ m ggF+VBF}^{ m SM}$	4.65	2.08	2.79	3.87	5.39	7.22

Conclusions

- Strong $HH \rightarrow bb\tau\tau$ result with 139 fb⁻¹ ATLAS data non-resonant: obs (exp) 4.7 (3.9) x SM resonant: obs (exp) 23 - 920 fb (12 - 840 fb)
 - factor 4 improvement compared to 36 fb⁻¹
 - 50% due to luminosity increase
 - 50% due to improved τ_{had} and b-jet reconstruction and identification and analysis-level improvements
 - highest expected sensitivity to non-resonant SM HH
 - excess at 1 TeV with global significance of 2σ
- Looking forward to the combination of the HH channels!!!

Run: 339535 Event: 996385095 2017-10-31 00:02:20 CEST

$$\tau_{had} \tau_{had}$$
 channel
 $m_{HH} = 510 \,\text{GeV}, \quad m_{bb} = 130 \,\text{GeV}, \quad m_{\tau\tau}^{MMC} = 130 \,\text{GeV}$

lepton

Acceptance x Efficiency

SM non-resonant HH signal $au_{had} au_{had}$ channel: 4% $au_{lep} au_{had}$ SLT channel: 4% $au_{lep} au_{had}$ LTT channel: 1%

Variable	$ au_{ m had} au_{ m had}$	$\tau_{\rm lep} \tau_{\rm had} {\rm SLT}$	$\tau_{\rm lep} \tau_{\rm had} \ {\rm LTT}$
m_{HH}	\checkmark	\checkmark	\checkmark
$m_{ au au}^{ m MMC}$	\checkmark	\checkmark	\checkmark
m_{bb}	\checkmark	\checkmark	\checkmark
$\Delta R(au, au)$	\checkmark	\checkmark	\checkmark
$\Delta R(b,b)$	\checkmark	\checkmark	
$\Delta p_{ m T}(\ell, au)$		\checkmark	\checkmark
Sub-leading <i>b</i> -tagged jet $p_{\rm T}$		\checkmark	
m_{T}^W		\checkmark	
$E_{\mathrm{T}}^{\mathrm{miss}}$		\checkmark	
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \phi$ centrality		\checkmark	
$\Delta \phi(au au,bb)$		\checkmark	
$\Delta \phi(\ell, {f p}_{ m T}^{ m miss})$			\checkmark
$\Delta \phi(\ell au, {f p}_{ m T}^{ m miss})$			\checkmark
S_{T}			\checkmark

PNN Score @ 500 GeV

