

CMS H(125) boson decays results

F. Errico¹, ¹University & INFN Bari

on behalf of the CMS Collaboration

HH2021, Orsay (France) 20-22/09/2021

Istituto Nazionale di Fisica Nucleare

Higgs boson discovery was announced on the 4th of July 2012.

Since then, much effort has been put into determining its properties

Higgs boson discovery was announced on the 4th of July 2012.

Since then, much effort has been put into determining its properties

Higgs boson discovery was announced on the 4th of July 2012.

Since then, much effort has been put into determining its properties

$H_{BR} @ m_{H} = 125.09 \text{ GeV}$

Decay channel	Branching ratio	Rel. uncertainty
$H\to\gamma\gamma$	2.27×10^{-3}	2.1%
$H \rightarrow ZZ$	2.62×10^{-2}	$\pm 1.5\%$
$H \to W^+ W^-$	2.14×10^{-1}	$\pm 1.5\%$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
$H ightarrow b ar{b}$	$5.82 imes 10^{-1}$	$^{+1.2\%}_{-1.3\%}$
$H \to c \bar{c}$	2.89×10^{-2}	$^{+5.5\%}_{-2.0\%}$
$H\to Z\gamma$	1.53×10^{-3}	$\pm 5.8\%$
$H \to \mu^+ \mu^-$	2.18×10^{-4}	$\pm 1.7\%$

Higgs boson discovery was announced on the 4th of July 2012.

Since then, much effort has been put into determining its properties

H_{BR} @ m_H = 125.09 GeV

Decay channel	Branching ratio	Rel. uncertainty
$H ightarrow \gamma \gamma$	$2.27 imes 10^{-3}$	2.1%
$H \rightarrow ZZ$	2.62×10^{-2}	$\pm 1.5\%$
$H \to W^+ W^-$	2.14×10^{-1}	$\pm 1.5\%$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
$H \to b \bar{b}$	$5.82 imes 10^{-1}$	$^{+1.2\%}_{-1.3\%}$
$H \to c \bar{c}$	2.89×10^{-2}	$^{+5.5\%}_{-2.0\%}$
$H\to Z\gamma$	$1.53 imes 10^{-3}$	$\pm 5.8\%$
$H \to \mu^+ \mu^-$	2.18×10^{-4}	$\pm 1.7\%$

Discussed in the next slides

Higgs boson discovery was announced on the 4th of July 2012.

Since then, much effort has been put into determining its properties

```
H_{BR} @ m_{H} = 125.09 \text{ GeV}
```

Decay channel	Branching ratio	Rel. uncertainty
$H ightarrow \gamma \gamma$	2.27×10^{-3}	2.1%
$H \rightarrow ZZ$	2.62×10^{-2}	$\pm 1.5\%$
$H \rightarrow W^+ W^-$	2.14×10^{-1}	$\pm 1.5\%$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
$H ightarrow b ar{b}$	$5.82 imes 10^{-1}$	$^{+1.2\%}_{-1.3\%}$
$H \to c \bar{c}$	2.89×10^{-2}	$^{+5.5\%}_{-2.0\%}$
$H\to Z\gamma$	1.53×10^{-3}	$\pm 5.8\%$
$H \rightarrow \mu^+ \mu^-$	2.18×10^{-4}	$\pm 1.7\%$

- clear signature
- large signal-to-background ratio due to the complete reconstruction of the final state decay products
- small branching fraction

F. Errico, HH2021 Orsay, 20th Sept 2021

Decay	channel	Branching rational states of the second states of t	o Rel. uncertainty
$H \to \gamma$	$\gamma \gamma$	$2.27 imes 10^{-3}$	2.1%
$H \to Z$	ZZ	2.62×10^{-2}	$\pm 1.5\%$
$H \to V$	V^+W^-	2.14×10^{-1}	$\pm 1.5\%$
$H \to \tau$	$\tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
$H \rightarrow b$	\overline{b}	$5.82 imes 10^{-1}$	$^{+1.2\%}_{-1.3\%}$
$H \rightarrow c$	$ar{c}$	2.89×10^{-2}	$^{+5.5\%}_{-2.0\%}$
$H \to Z$	7γ	$1.53 imes 10^{-3}$	$\pm 5.8\%$
$H \to \mu$	$\mu^+\mu^-$	2.18×10^{-4}	$\pm 1.7\%$

H_{BR} @ m_H = 125.09 GeV

- Signal line shape: double-sided Crystal Ball
- **ZZ*** **backgrounds**: estimated from MC simulation
- Z+X contribution: estimated from data

Eur. Phys. J. C 81 (2021) 488

Signal strength modifier (\mu) is defined as the ratio between the measured signal cross section and the SM expectation.

STXS tries to maximise the sensitivity of the measurement, minimising the dependence on the theory predictions, defining several kinematic regions using generator level information.

Fiducial cross section: cross section defined in a **fiducial phase space**. The idea is to **minimise the dependence on theoretical uncertainties**. The fiducial volume is defined imposing lepton kinematic cuts and isolation requirements.

10

Not only SM measurements, but also search for CP violation and anomalous couplings

anomalous coupling framework

SMEFT formulation

clear signature

Phys. Lett. B 805 (2020) 135425

- high precision in reconstructing diphoton invariant mass
- small branching fraction (0.2% @ 125 GeV)

F. Errico, HH2021 Orsay, 20th Sept 2021

Decay channel	Branching ratio	Rel. uncertainty
$H \to \gamma \gamma$	2.27×10^{-3}	2.1%
$H \rightarrow ZZ$	2.62×10^{-2}	$\pm 1.5\%$
$H \to W^+ W^-$	2.14×10^{-1}	$\pm 1.5\%$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
$H ightarrow b ar{b}$	$5.82 imes 10^{-1}$	$^{+1.2\%}_{-1.3\%}$
$H \to c \bar{c}$	2.89×10^{-2}	$+5.5\% \\ -2.0\%$
$H \to Z \gamma$	$1.53 imes 10^{-3}$	$\pm 5.8\%$
$H \to \mu^+ \mu^-$	2.18×10^{-4}	$\pm 1.7\%$

$H_{BR} @ m_{H} = 125.09 \text{ GeV}$

F. Errico, HH2021 Orsay, 20th Sept 2021

13

2.1%

 $\pm 1.5\%$

 $\pm 1.5\%$

 $\pm 1.6\%$

+1.2%

-1.3%

+5.5%

-2.0%

Inclusive signal strength modifier (µ)

 $\mu = 1.12^{+0.09}_{-0.09} = 1.12^{+0.06}_{-0.06}(theo)^{+0.03}_{-0.03}(syst)^{+0.07}_{-0.06}(stat)$

14

Several different machine learning algorithms are used for rejection and classification purposes

15

- second dominating branching ratio (21.4% @ 125 GeV)
- The neutrino in the leptonic decay prevents the full reconstruction of the Higgs boson mass.

Decay channel	Branching ratio	Rel. uncertainty
$H\to\gamma\gamma$	2.27×10^{-3}	2.1%
$H \rightarrow ZZ$	2.62×10^{-2}	$\pm 1.5\%$
$H \rightarrow W^+ W^-$	2.14×10^{-1}	$\pm 1.5\%$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
$H ightarrow b ar{b}$	$5.82 imes 10^{-1}$	$^{+1.2\%}_{-1.3\%}$
$H \to c \bar{c}$	2.89×10^{-2}	$^{+5.5\%}_{-2.0\%}$
$H \to Z \gamma$	1.53×10^{-3}	$\pm 5.8\%$
$H \rightarrow \mu^+ \mu^-$	$2.18 imes 10^{-4}$	$\pm 1.7\%$

H_{BR} @ m_H = 125.09 GeV

- Bkg from prompt leptons: estimated from MC simulation
- **Bkg from nonprompt**: estimated from data

JHEP 03 (2021) 003

Observable	Condition
Lepton origin	Direct decay of $H \rightarrow W^+W^-$
Lepton flavors; lepton charge	$e\mu$ (not from τ decay); opposite
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}}^{l_1} > 25\mathrm{GeV}$
Trailing lepton $p_{\rm T}$	$p_{\rm T}^{l_2} > 13 { m GeV}$
$ \eta $ of leptons	$ \eta < 2.5$
Dilepton mass	$m^{ll} > 12 \mathrm{GeV}$
$p_{\rm T}$ of the dilepton system	$p_{\mathrm{T}}^{ll} > 30\mathrm{GeV}$
Transverse mass using trailing lepton	$m_{\rm T}^{l_2} > 30 { m GeV}$
Higgs boson transverse mass	$m_{\mathrm{T}}^{\mathrm{\hat{H}}} > 60 \mathrm{GeV}$

Fiducial volume definition

≥ 4

 $N_{\rm jet}$

CMS

JHEP 03 (2021) 003

F. Errico, HH2021 Orsay, 20th Sept 2021

JHEP 03 (2021) 003

18

Built a dedicated analysis targeting VH production mode

 $\mu = 1.85^{+0.33}_{-0.32}(stat)^{+0.27}_{-0.25}(syst)^{+0.10}_{-0.07}(theo)$

Istituto Nazionale di Fisica Nucleare

Summary

Boson decays results of the Higgs boson have been presented.

- VV (V = W or Z) and $\gamma\gamma$ decay channels have been considered.
- CMS sets best result up to now in Higgs boson mass measurement: mass $m_H = 125.38 \pm 0.14$ GeV
- Latest CMS results:
 - STXS using full Run II data in HZZ and in Hγγ
 - fiducial (differential) cross section using full Run II data in HZZ and in HWW
 - anomalous coupling and EFT searches using HZZ
 - signal strength for HZZ, Hγγ and in HWW (VH targeted analysis) channels
- No deviations from SM expectations have been observed.

20

Summary

Boson decays results of the Higgs boson have been presented.

- VV (V = W or Z) and $\gamma\gamma$ decay channels have been considered.
- CMS sets best result up to now in Higgs boson mass measurement: mass $m_H = 125.38 \pm 0.14$ GeV
- Latest CMS results:
 - STXS using full Run II data in HZZ and in Hγγ
 - fiducial (differential) cross section using full Run II data in HZZ and in HWW
 - anomalous coupling and EFT searches using HZZ
 - signal strength for HZZ, Hγγ and in HWW (VH targeted analysis) channels
- No deviations from SM expectations have been observed.

STAY TUNED... RUN 3 IS COMING!

Thanks for the attention

To further discuss about the content of this presentation, please contact me at <u>filippo.errico@cern.ch</u>

Backup

24

Higgs boson to $ZZ \rightarrow 4\ell$

	Expected	Observed
$\mu_{t\bar{t}H,tH}$	$1.00^{+1.23}_{-0.77} (\mathrm{stat})^{+0.51}_{-0.06} (\mathrm{syst})$	$0.17^{+0.88}_{-0.17}({ m stat})^{+0.42}_{-0.00}({ m syst})$
$\mu_{ m WH}$	$1.00^{+1.83}_{-1.00}({ m stat})^{+0.75}_{-0.00}({ m syst})$	$1.66^{+1.52}_{-1.66}({ m stat})^{+0.85}_{-0.00}({ m syst})$
$\mu_{ m ZH}$	$1.00^{+4.79}_{-1.00}(m stat)^{+6.76}_{-0.00}(m syst)$	$0.00^{+4.38}_{-0.00}({ m stat})^{+3.24}_{-0.00}({ m syst})$
$\mu_{ m VBF}$	$1.00^{+0.53}_{-0.44}({ m stat})^{+0.18}_{-0.12}({ m syst})$	$0.48^{+0.46}_{-0.37}({ m stat})^{+0.14}_{-0.10}({ m syst})$
$\mu_{ m ggH,bar{b}H}$	$1.00 \pm 0.10 ({ m stat})^{+0.12}_{-0.10} ({ m syst})$	$0.99\pm0.09({ m stat})^{+0.11}_{-0.09}({ m syst})$
μ	$1.00^{+0.08}_{-0.07}({ m stat})^{+0.10}_{-0.08}({ m syst})$	$0.94\pm 0.07({ m stat})^{+0.09}_{-0.08}({ m syst})$

Signal strength modifier (µ) is defined as the ratio between the measured signal cross section and the SM expectation.

6

μ

Not only SM measurements, but also search for CP violation and anomalous couplings

anomalous coupling framework

SMEFT formulation

Not only SM measurements, but also search for CP violation and anomalous couplings

$a_1^{\rm WW} = a_1^{ZZ} + \frac{\Delta m_{\rm W}}{m_{\rm W}},$	
$a_2^{WW} = c_w^2 a_2^{ZZ} + s_w^2 a_2^{\gamma\gamma} + 2s_w c_w a_2^{Z\gamma}$	
$a_3^{WW} = c_w^2 a_3^{ZZ} + s_w^2 a_3^{\gamma\gamma} + 2s_w c_w a_3^{Z\gamma}$,	
$\frac{\kappa_1^{WW}}{(\Lambda_1^{WW})^2}(c_w^2 - s_w^2) = \frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2} + 2s_w^2 \frac{a_2^{\gamma\gamma} - a_2^{ZZ}}{m_Z^2} + 2\frac{s_w}{c_w}(c_w^2 - s_w^2)\frac{a_2^{Z\gamma}}{m_Z^2}$,
$\frac{\kappa_2^{Z\gamma}}{(\Lambda_1^{Z\gamma})^2}(c_w^2 - s_w^2) = 2s_w c_w \left(\frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2} + \frac{a_2^{\gamma\gamma} - a_2^{ZZ}}{m_Z^2}\right) + 2(c_w^2 - s_w^2) + 2(c_w^2 -$	$\frac{a_2^{Z\gamma}}{m_Z^2},$

anomalous coupling framework

F. Errico, HH2021 Orsay, 20th Sept 2021

 $\delta c_{\rm z} = \frac{1}{2}a_1 - 1,$ $c_{z\Box} = \frac{m_Z^2 s_w^2}{4\pi\alpha} \frac{\kappa_1}{(\Lambda_1)^2},$ $c_{zz} = -\frac{s_w^2 c_w^2}{2\pi\alpha}a_2,$ $\tilde{c}_{zz} = -\frac{s_{\rm w}^2 c_{\rm w}^2}{2\pi\alpha} a_3$ $c_{\rm gg} = -\frac{1}{2\pi\alpha_{\rm S}}a_2^{\rm gg},$ $\tilde{c}_{gg} = -\frac{1}{2\pi\alpha_S}a_3^{gg},$

SMEFT formulation

26

Eur. Phys. J. C 81 (2021) 488

Requirements for the $H \rightarrow 4\ell$ fiducial phase space Lepton kinematics and isolation

Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20 \mathrm{GeV}$
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10 \mathrm{GeV}$
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$
Pseudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4)
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\mathrm{T}}$
Event topology	
Existence of at least two same-flavor OS lepton pairs, where leptons	satisfy criteria above
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$
Inv. mass of the Z ₂ candidate	$12 < m_{Z_2} < 120 \text{GeV}$
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4\mathrm{GeV}$
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140 { m GeV}$

135425	
(2020)	
B 805	
Lett.	
Phys.	

Source	Contribution (GeV)
Electron energy scale and resolution corrections	0.10
Residual $p_{\rm T}$ dependence of the photon energy scale	0.11
Modelling of the material budget	0.03
Nonuniformity of the light collection	0.11
Total systematic uncertainty	0.18
Statistical uncertainty	0.18
Total uncertainty	0.26

29

Built a dedicated analysis targeting VH production mode

	WHSS	WH31	ZH31	ZH41
Number of leptons with $p_{\rm T} > 10$ GeV	2	3	3	4
Number of jets with $p_{\rm T} > 30 {\rm GeV}$	≥ 1	0	≥ 1	

Туре	Source	Impact (%)
	Renormalization and factorization scale	3
Theoretical	Parton distribution function	2
Theoretical	Parton shower, underlying event	2
	Nonprompt	9
	Sample size of simulation data	8
	Electron	3
	b tag	3
Experimental	Jet	2
	Luminosity	2
	WZ normalization	2
	$Z\gamma$ normalization	
	ZZ normalization	1
	Muon	1

 $\mu_{p_T^V < 150 GeV} = 2.65^{+0.57}_{-0.55}(stat)^{+0.38}_{-0.32}(syst)^{+0.08}_{-0.07}(theo)$ $\mu_{p_T^V > 150 GeV} = 1.56^{+0.85}_{-0.77}(stat)^{+0.43}_{-0.40}(syst)^{+0.11}_{-0.09}(theo)$

JHEP 11 (2018) 152

$H \longrightarrow Z\gamma$

2016

Combination: Exp (obs) limits: 2.0 (3.9) times the SM XS at 125 GeV @ 95% C.L.

pValue Exp(obs) = 0.02 (0.16)corresponding to $\sim 2\sigma$ ($\sim 1\sigma$)

Dominant Feynman diagrams contributing to the $H \rightarrow \ell \ell \gamma$ process

Exp (obs) limits: 2.1 - 2.3 (1.4 - 4.0) times the SM XS F. Errico, HH2021 Orsay, 20th Sept 2021

Exp (obs) limits: 3.9 - 9.1 (6.1 - 11.4) times the SM XS

Higgs boson decay to ZZ

Difficulties in directly measuring the width (4.07 MeV) due to detector resolution.

Measured in the H to 4ℓ channel, combining 2016-2017 data with Runl, comparing on-shell and offshell production:

Set a lower

bound for the first time $\Gamma_H < 9.16 \ (exp \ 13.7) \ MeV \ @95 \% C.L.$

Best result up to now:

F. Errico, HH2021 Orsay, 20th Sept 2021

32

Higgs boson decay to WW

Higgs boson decay to yy

34

ggF: Stage 1

ggF: Stage 1.1

STXS

VBF: Stage 1

F. Errico, HH2021 Orsay, 20th Sept 2021

VH: Stage 1.1

F. Errico, HH2021 Orsay, 20th Sept 2021

37