

Measurement of Differential Higgs Boson Cross Section with the Di-Tau Decay Channel at CMS

Andrew Loeliger – University of Wisconsin Madison On behalf of the CMS Collaboration

Introduction

2			
	Analysis	Link To Documentation	arXiv link
	$H\tau\tau$ Differential Cross Section Analysis	CMS-PAS-HIG-20-015	<u>2107.11486</u>

- $H \rightarrow \tau \tau$ decays...
 - ... provide direct observation of the yukawa coupling
 - ... have a high branching fraction that allows for measurements of rarer parts of Higgs Phase space (high transverse momentum, large jet multiplicity, etc)
- The $H \rightarrow \tau \tau$ had its first observation in 2016, and is now the target of increasingly precise measurements
 - STXS measurements (<u>Anne-Catherine's Talk</u>) (<u>Official Documentation</u>)
 - Differential Measurements

Differential Analysis

- This analysis targets an inclusive and differential fiducial higgs XS measurement using $H \rightarrow \tau \tau$ decays
 - Provides a more model independent way to look at Higgs physics in secondary variables than the STXS scheme, but integrates over production modes
- Three variables are considered that provide the most interesting measurements and where the $H \rightarrow \tau \tau$ channel can contribute

 - Jet Multiplicity
 - Leading Jet Pt
- The $H \rightarrow \tau \tau$ channel offers a good way to examine low cross section regions of phase space
 - High branching fraction to massive taus
- This is the first time that a differential analysis has been performed for the $H \rightarrow \tau \tau$ channel at the LHC

Differential Analysis Strategy

- The Di-Tau decay is picked up in 4 channels: $\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$
- Fiducial region defined similarly to offline selection
- In order to maintain independence from the three differential variables, the analysis is categorized based on tau pt
 - S/B increases with p_t^{τ}
 - $e\mu$ left uncategorized
- Three categories are used:
 - Low p_t^{τ} : 30-50 GeV (40-50 GeV for $\tau_h \tau_h$)
 - Intermediate p_t^{τ} : 50-70 GeV
 - High p_t^{τ} : 70+ GeV

Likelihood Fitting

- 5
- Results are extracted as a simultaneous fit maximizing the likelihood function of the form:

Regularization

- 6
- To remove unphysical (statistical) fluctuations of parameters, regularization is employed
- A penalty term of the form:

$$\mathcal{K}(\boldsymbol{\mu}) = \prod_{j=1}^{M-2} \exp\left(\frac{-\left[\left(\mu_{j+1} - \mu_{j}\right) - \left(\mu_{j} - \mu_{j-1}\right)\right]^{2}}{2\delta^{2}}\right)$$

Where *M* is the number of bins, and δ controls the strength of the regularization is multiplied in the likelihood function

• δ is optimized to minimize mean global correlation coefficient

Categorization and Signal Extraction

- Categories use di-tau mass as a primary observable
 - Categories also split further with each observable parameter given a bin, except where statistics do not permit it

S/B Weighted Plots (p_t^H)

Differential X-Sec (p_t^H)

9

Andrew Loeliger - University of Wisconsin Madison

S/B Weighted Plots (N_{jets})

Differential X-Sec (N_{jets})

S/B Weighted Plots (Leading Jet p_t)

Andrew Loeliger - University of Wisconsin Madison

CMS

WISCONSIN

Differential X-Sec (Leading Jet p_t)

- 14
- This is the first time that a differential analysis has been performed for the $H \rightarrow \tau \tau$ channel
- The differential analysis shows good agreement with SM expectation
 - Values largely agree within uncertainties
 - P-values (with respect to SM)17%/71%/45% for $p_t^H/N_{Jets}/Leading$ Jet p_t
- Particularly precise, with comparable precision in the fiducial region to CMS' $H \rightarrow WW$ Run 2 differential analysis for...
 - $120 \ GeV < p_t^H$
 - $N_{Jets} > 2$
 - Leading Jet $p_t > 120 \text{ GeV}$
- With $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ Analyses there will be good coverage for entire Higgs phase space.

Andrew Loeliger - University of Wisconsin Madison

Correlation, Regularized, PTH

Correlation, Regularized, NJets

Correlation, Regularized, Leading Jet Pt

18

- 0.8

-0.6

-0.4

-0.2

-10

-0.2

-0.4

-0.6

8.0-

-1

138 fb⁻¹ (13 TeV) $P_{T}^{jet1} \geq 350$ CMS 1.00 Preliminary P_T^{jet1} [200:350] 1.00 0.29 P_T^{jet1} [120:200] 0.13 0.12 1.00 P_T^{jet1} [60:120] 0.01 1.00 -0.06 0.03 P_T^{jet1} [30:60] 1.00 0.00 0.07 0.02 0.01 $N_{jets} = 0$ 1.00 0.05 0.12 0.06 0.00 -0.01 $N_{jets} = 0$ $P_T^{jet1} \ge 350$ P_T^{jet1} [30:60] [200:350] P_T^{jet1} [60:120] [120:200]

Andrew Loeliger - University of Wisconsin Madison

jet1 ⊤